5 research outputs found

    A Novel Approach for Back-haul Self Healing in 4G/5G HetNets

    Get PDF
    4G/5G Heterogeneous Networks (HetNets), which are expected to have a very dense multi-layer network structure, have emerged as a solution to satisfy the increasing demand for high data rates. These networks, similar to other networks, are subject to failures of communication components, which may occur due to many reasons. Self-Healing (SH) is the ability of the network to continue its normal operation in the presence of failures. The contribution of this paper is to introduce a novel SH approach for all network base-stations (BSs) back-hauling in a HetNet. New SH radios are proposed with enabled Cognitive Radio (CR) capabilities for utilizing the spectrum. A Software Defined Wireless Network Controller (SDWNC) is used to handle all control information between all network elements (except user equipment). This novel pre-planned reactive SH approach ensures network reliability under multiple failures. A simulation study is conducted to assess the performance of our approach through the evaluation of the Degree of Recovery (DoR) under single and multiple failures. Our approach can achieve a DoR of at least 10% using only 1 SHR and an enhanced DoR can be achieved using a greater number of SHRs

    Fronthaul cell outage compensation for 5G networks

    Get PDF
    5G networks are expected to bring the gigabits per second throughput level per user to reality by 2020. This is done using a combination of new and well known technologies such as C-RAN, self-organizing networks, ultra dense networks, massive MIMO, and millimeter waves. In new RAN architectures, C-RAN has been viewed as a promising 5G architecture that centralizes baseband processing units and virtualizes them into a resource pool. The baseband units are connected to the remote radio heads via high speed fronthaul links. Failure of any 5G cell site fronthaul means the loss of hundreds of gigabits, or even terabits. In this article, we present a novel cell outage compensation approach using new SHRs added to each cell site in the 5G network. These SHRs operate only in case of fronthaul/ backhaul failure of any cell site in the network. A new software defined controller is introduced to handle the self-healing procedures. The article also introduces a high-level simulation study that is carried out to assess the proposed approach. The simulation results confirm the advantages of the proposed approach in terms of the degree of recovery from failures

    Self-Healing in 5G HetNets

    Get PDF
    The main requirements of 5G are emerging through the efforts of diverse groups such as 4G America in United States, IMT-2020 (5G) promotion group in China and the 5G Private Public Partnership (5G PPP) in Europe. The 5G requirements will tremendously increase the network complexity which requires auto-integration and self-management capabilities that are well beyond today\u27s self-organising network features. Additionally, ultra-reliable communications put very stringent latency and reliability requirements on the architecture

    A Novel Approach for Back-haul Self Healing in 4G/5G HetNets

    Get PDF
    4G/5G Heterogeneous Networks (HetNets), which are expected to have a very dense multi-layer network structure, have emerged as a solution to satisfy the increasing demand for high data rates. These networks, similar to other networks, are subject to failures of communication components, which may occur due to many reasons. Self-Healing (SH) is the ability of the network to continue its normal operation in the presence of failures. The contribution of this paper is to introduce a novel SH approach for all network base-stations (BSs) back-hauling in a HetNet. New SH radios are proposed with enabled Cognitive Radio (CR) capabilities for utilizing the spectrum. A Software Defined Wireless Network Controller (SDWNC) is used to handle all control information between all network elements (except user equipment). This novel pre-planned reactive SH approach ensures network reliability under multiple failures. A simulation study is conducted to assess the performance of our approach through the evaluation of the Degree of Recovery (DoR) under single and multiple failures. Our approach can achieve a DoR of at least 10% using only 1 SHR and an enhanced DoR can be achieved using a greater number of SHRs.This is a manuscript of a proceeding published as Selim, Mohamed, Ahmed Kamal, Khaled Elsayed, Heba Abd-El-Atty, and Mohammed Alnuem. "A Novel Approach for Back-haul Self Healing in 4G/5G HetNets." In 2015 IEEE International Conference on Communications (ICC). (2015): 3927-3932. DOI: 10.1109/ICC.2015.7248937. Posted with permission.</p

    Final Specification of Cooperative Functionalities

    Get PDF
    This deliverable presents the specification of the final version of the Cooperative AP Functionalities that have been designed in the context of Work Package (WP) 4 of the Wi-5 project. In detail, we present a general cooperative framework that includes functionalities for a Radio Resource Management (RRM) algorithm, which provides channel assignment and transmit power adjustment strategies, an AP selection policy, which also provides horizontal handover, and a Radio Access Technology (RAT) selection solution for vertical handover. The RRM algorithm achieves an important improvement for network performance in terms of several parameters through the channel assignment approach and the transmit power adjustment. The AP selection solution extends the approach presented in deliverables D4.1 and D4.2 and is based on a centralised potential game, which optimises the distribution of the so-called Fittingness Factor (FF) parameter among the Wi-Fi users. Such a parameter efficiently matches the suitability of the available spectrum resource to the users’ application requirements. Moreover, the RAT selection solution extends the AP selection algorithm towards vertical handover functionality including 3G/4G networks. The assessment of the newest algorithms developed in the context of WP4 is illustrated in this deliverable through the analysis of several performance results in a simulated environment against other strategies found in the literature. Finally, the set of smart AP functionalities developed in the context of WP3, implemented on the Wi5 APs and on the Wi-5 controller, and their use in the proposed algorithms are illustrated. Specifically, this deliverable describes how these functionalities can enable the correct deployment of the proposed cooperative AP solutions in realistic scenarios. Therefore, the main novel contributions of this deliverable are i) the strengthening of the AP selection algorithm, ii) the design and assessment of a new algorithm for vertical handover and iii) the presentation of the finalised integration of the cooperative AP functionalities of the Wi-5 system
    corecore