5 research outputs found

    Double Check Your State Before Trusting It: Confidence-Aware Bidirectional Offline Model-Based Imagination

    Full text link
    The learned policy of model-free offline reinforcement learning (RL) methods is often constrained to stay within the support of datasets to avoid possible dangerous out-of-distribution actions or states, making it challenging to handle out-of-support region. Model-based RL methods offer a richer dataset and benefit generalization by generating imaginary trajectories with either trained forward or reverse dynamics model. However, the imagined transitions may be inaccurate, thus downgrading the performance of the underlying offline RL method. In this paper, we propose to augment the offline dataset by using trained bidirectional dynamics models and rollout policies with double check. We introduce conservatism by trusting samples that the forward model and backward model agree on. Our method, confidence-aware bidirectional offline model-based imagination, generates reliable samples and can be combined with any model-free offline RL method. Experimental results on the D4RL benchmarks demonstrate that our method significantly boosts the performance of existing model-free offline RL algorithms and achieves competitive or better scores against baseline methods.Comment: NeurIPS 202

    A Novel Approach for A Double-Check of Passable Vegetation Detection in Autonomous Ground Vehicles

    No full text
    Abstract-The paper introduces an active way to detect vegetation which is at front of the vehicle in order to give a better decision-making in navigation. Blowing devices are to be used for creating strong wind to effect vegetation. Motion compensation and motion detection techniques are applied to detect foreground objects which are presumably judged as vegetation. The approach enables a double-check process for vegetation detection which was done by a multi-spectral approach, but more emphasizing on the purpose of passable vegetation detection. In all real world experiments we carried out, our approach yields a detection accuracy of over 98%. We furthermore illustrate how the active way can improve the autonomous navigation capabilities of autonomous ground vehicles

    Traversability analysis in unstructured forested terrains for off-road autonomy using LIDAR data

    Get PDF
    Scene perception and traversability analysis are real challenges for autonomous driving systems. In the context of off-road autonomy, there are additional challenges due to the unstructured environments and the existence of various vegetation types. It is necessary for the Autonomous Ground Vehicles (AGVs) to be able to identify obstacles and load-bearing surfaces in the terrain to ensure a safe navigation (McDaniel et al. 2012). The presence of vegetation in off-road autonomy applications presents unique challenges for scene understanding: 1) understory vegetation makes it difficult to detect obstacles or to identify load-bearing surfaces; and 2) trees are usually regarded as obstacles even though only trunks of the trees pose collision risk in navigation. The overarching goal of this dissertation was to study traversability analysis in unstructured forested terrains for off-road autonomy using LIDAR data. More specifically, to address the aforementioned challenges, this dissertation studied the impacts of the understory vegetation density on the solid obstacle detection performance of the off-road autonomous systems. By leveraging a physics-based autonomous driving simulator, a classification-based machine learning framework was proposed for obstacle detection based on point cloud data captured by LIDAR. Features were extracted based on a cumulative approach meaning that information related to each feature was updated at each timeframe when new data was collected by LIDAR. It was concluded that the increase in the density of understory vegetation adversely affected the classification performance in correctly detecting solid obstacles. Additionally, a regression-based framework was proposed for estimating the understory vegetation density for safe path planning purposes according to which the traversabilty risk level was regarded as a function of estimated density. Thus, the denser the predicted density of an area, the higher the risk of collision if the AGV traversed through that area. Finally, for the trees in the terrain, the dissertation investigated statistical features that can be used in machine learning algorithms to differentiate trees from solid obstacles in the context of forested off-road scenes. Using the proposed extracted features, the classification algorithm was able to generate high precision results for differentiating trees from solid obstacles. Such differentiation can result in more optimized path planning in off-road applications

    Vegetation detection and terrain classification for autonomous navigation

    Get PDF
    Diese Arbeit beleuchtet sieben neuartige AnsĂ€tze aus zwei Bereichen der maschinellen Wahrnehmung: Erkennung von Vegetation und Klassifizierung von GelĂ€nde. Diese Elemente bilden den Kern eines jeden Steuerungssystems fĂŒr effiziente, autonome Navigation im Außenbereich. BezĂŒglich der Vegetationserkennung, wird zuerst ein auf Indizierung basierender Ansatz beschrieben (1), der die reflektierenden und absorbierenden Eigenschaften von Pflanzen im Bezug auf sichtbares und nah-infrarotes Licht auswertet. Zweitens wird eine Fusionmethode von 2D/3D Merkmalen untersucht (2), die das menschliche System der Vegetationserkennung nachbildet. ZusĂ€tzlich wird ein integriertes System vorgeschlagen (3), welches die visuelle Wahrnehmung mit multi-spektralen Methoden ko mbiniert. Aufbauend auf detaillierten Studien zu Farb- und Textureigenschaften von Vegetation wird ein adaptiver selbstlernender Algorithmus eingefĂŒhrt der robust und schnell Pflanzen(bewuchs) erkennt (4). Komplettiert wird die Vegetationserkennung durch einen Algorithmus zur BefahrbarkeitseinschĂ€tzung von Vegetation, der die Verformbarkeit von Pflanzen erkennt. Je leichter sich Pflanzen bewegen lassen, umso grĂ¶ĂŸer ist ihre Befahrbarkeit. BezĂŒglich der GelĂ€ndeklassifizierung wird eine struktur-basierte Methode vorgestellt (6), welche die 3D Strukturdaten einer Umgebung durch die statistische Analyse lokaler Punkte von LiDAR Daten unterstĂŒtzt. Zuletzt wird eine auf Klassifizierung basierende Methode (7) beschrieben, die LiDAR und Kamera-Daten kombiniert, um eine 3D Szene zu rekonstruieren. Basierend auf den Vorteilen der vorgestellten Algorithmen im Bezug auf die maschinelle Wahrnehmung, hoffen wir, dass diese Arbeit als Ausgangspunkt fĂŒr weitere Entwicklung en von zuverlĂ€ssigen Erkennungsmethoden dient.This thesis introduces seven novel contributions for two perception tasks: vegetation detection and terrain classification, that are at the core of any control system for efficient autonomous navigation in outdoor environments. Regarding vegetation detection, we first describe a vegetation index-based method (1), which relies on the absorption and reflectance properties of vegetation to visual light and near-infrared light, respectively. Second, a 2D/3D feature fusion (2), which imitates the human visual system in vegetation interpretation, is investigated. Alternatively, an integrated vision system (3) is proposed to realise our greedy ambition in combining visual perception-based and multi-spectral methods by only using a unit device. A depth study on colour and texture features of vegetation has been carried out, which leads to a robust and fast vegetation detection through an adaptive learning algorithm (4). In addition, a double-check of passable vegetation detection (5) is realised, relying on the compressibility of vegetation. The lower degree of resistance vegetation has, the more traversable it is. Regarding terrain classification, we introduce a structure-based method (6) to capture the world scene by inferring its 3D structures through a local point statistic analysis on LiDAR data. Finally, a classification-based method (7), which combines the LiDAR data and visual information to reconstruct 3D scenes, is presented. Whereby, object representation is described more details, thus enabling an ability to classify more object types. Based on the success of the proposed perceptual inference methods in the environmental sensing tasks, we hope that this thesis will really serve as a key point for further development of highly reliable perceptual inference methods
    corecore