2,076 research outputs found

    Random Access Game and Medium Access Control Design

    Get PDF
    Motivated partially by a control-theoretic viewpoint, we propose a game-theoretic model, called random access game, for contention control. We characterize Nash equilibria of random access games, study their dynamics, and propose distributed algorithms (strategy evolutions) to achieve Nash equilibria. This provides a general analytical framework that is capable of modeling a large class of system-wide quality-of-service (QoS) models via the specification of per-node utility functions, in which system-wide fairness or service differentiation can be achieved in a distributed manner as long as each node executes a contention resolution algorithm that is designed to achieve the Nash equilibrium. We thus propose a novel medium access method derived from carrier sense multiple access/collision avoidance (CSMA/CA) according to distributed strategy update mechanism achieving the Nash equilibrium of random access game. We present a concrete medium access method that adapts to a continuous contention measure called conditional collision probability, stabilizes the network into a steady state that achieves optimal throughput with targeted fairness (or service differentiation), and can decouple contention control from handling failed transmissions. In addition to guiding medium access control design, the random access game model also provides an analytical framework to understand equilibrium and dynamic properties of different medium access protocols

    Adaptive fair channel allocation for QoS enhancement in IEEE 802.11 wireless LANs

    Get PDF
    The emerging widespread use of real-time multimedia applications over wireless networks makes the support of quality of service (QoS) a key problem. In this paper, we focus on QoS support mechanisms for IEEE 802.11 wireless ad-hoc networks. First, we review limitations of the upcoming IEEE 802.11e enhanced DCF (EDCF) and other enhanced MAC schemes that have been proposed to support QoS for 802.11 ad-hoc networks. Then, we describe a new scheme called adaptive fair EDCF that extends EDCF, by increasing the contention window during deferring periods when the channel is busy, and by using an adaptive fast backoff mechanism when the channel is idle. Our scheme computes an adaptive backoff threshold for each priority level by taking into account the channel load. The new scheme significantly improves the quality of multimedia applications. Moreover, it increases the overall throughput obtained both in medium and high load cases. Simulution results show that our new scheme outperforms EDCF and other enhanced schemes. Finally, we show that the adaptive fair EDCF scheme achieves a high degree of fairness among applications of the same priority level

    Performance analysis under finite load and improvements for multirate 802.11

    Get PDF
    Automatic rate adaptation in CSMA/CA wireless networks may cause drastic throughput degradation for high speed bit rate stations (STAs). The CSMA/CA medium access method guarantees equal long-term channel access probability to all hosts when they are saturated. In previous work it has been shown that the saturation throughput of any STA is limited by the saturation throughput of the STA with the lowest bit rate in the same infrastructure. In order to overcome this problem, we ¯rst introduce in this paper a new model for ¯nite load sources with multirate capabilities. We use our model to investigate the throughput degradation outside and inside the saturation regime. We de¯ne a new fairness index based on the channel occupation time to have more suitable de¯nition of fairness in multirate environments. Further, we propose two simple but powerful mechanisms to partly bypass the observed decline in performance and meet the proposed fairness. Finally, we use our model for ¯nite load sources to evaluate our proposed mechanisms in terms of total throughput and MAC layer delay for various network con¯gurations

    Improving Fairness and Utilisation in Ad Hoc Networks

    Get PDF
    Ad hoc networks represent the current de-facto alternative for infrastructure-less environments, due to their self-configuring and resilience characteristics. Ad hoc networks flexibility benefits, such as unrestrained computing, lack of centralisation, and ease of deployment at low costs, are tightly bound with relevant deficiencies such as limited resources and management difficulty. Ad hoc networks witnessed high attention from the research community due to the numerous challenges faced when deploying such a technology in real scenarios. Starting with the nature of the wireless environment, which raises significant transmission issues when compared with the wired counterpart, ad hoc networks require a different approach when addressing the data link problems. Further, the high packet loss due to wireless contention, independent of network congestion, requires a different approach when considering quality of service degradation and unfair channel resources distribution among competing flows. Although these issues have already been considered to some extent by researchers, there is still room to improve quality of service by reducing the effect of packet loss and fairly distributing the medium access among competing nodes. The aim of this thesis is to propose a set of mechanisms to alleviate the effect of packet loss and to improve fairness in ad hoc networks. A transport layer algorithm has been proposed to overcome the effects of hidden node collisions and to reduce the impact of wireless link contention by estimating the four hop delay and pacing packet transmissions accordingly. Furthermore, certain topologies have been identified, in which the standard IEEE 802.11 faces degradation in channel utilisation and unfair bandwidth allocation. Three link layer mechanisms have been proposed to tackle the challenges the IEEE 802.11 faces in the identified scenarios to impose fairness in ad hoc networks through fairly distributing channel resources between competing nodes. These mechanisms are based on monitoring the collision rate and penalising the greedy nodes where no competing nodes can be detected but interference exists, monitoring traffic at source nodes to police access to the channel where only source nodes are within transmission range of each other, and using MAC layer acknowledgements to flag unfair bandwidth allocation in topologies where only the receivers are within transmission range of each other. The proposed mechanisms have been integrated into a framework designed to adapt and to dynamically select which mechanism to adopt, depending on the network topology. It is important to note that the proposed mechanisms and framework are not alternatives to the standard MAC protocol but are an enhancement and are triggered by the failure of the IEEE 802.11 protocol to distribute the channel resources fairly. All the proposed mechanisms have been validated through simulations and the results obtained from the experiments show that the proposed schemes fairly distribute channel resources fairly and outperform the performance of the IEEE 802.11 protocol in terms of channel utilisation as well as fairness

    Queue utilization with hop based enhanced arbitrary inter frame spacing MAC for saturated ad HOC networks

    Get PDF
    © 2015 IEEE. Path length of a multi hop Ad Hoc networks has an adverse impact on the end-to-end throughput especially during network saturation. The success rate of forwarding packets towards destination is limited due to interference, contention, limited buffer space, and bandwidth. Real time applications streaming data fill the buffer space at a faster rate at the source and its nearby forwarding nodes since the channel is shared. The aim of this paper is to increase the success rate of forwarding the packets to yield a higher end-to-end throughput. In order to reduce loss of packets due to buffer overflow and enhance the performance of the network for a saturated network, a novel MAC protocol named Queue Utilization with Hop Based Enhanced Arbitrary Inter Frame Spacing based (QU-EAIFS) MAC is proposed for alleviating the problems in saturated Ad Hoc networks. The protocol prioritises the nodes based on its queue utilization and hops travelled by the packet and it helps achieving higher end-toend performance by forwarding the packets with higher rate towards the destination during network saturation. The proposed MAC enhances the end-to-end performance by approximately 40% and 34% for a 5hop and 6hop communication respectively in a chain topology as compared to the standard IEEE802.11b. The performance of the new MAC also outperforms the performance of IEEE 802.11e MAC. In order to validate the protocol, it is also tested with short hops and varying packet sizes and more realistic random topologies
    corecore