3 research outputs found

    Lower Bounds on the Bounded Coefficient Complexity of Bilinear Maps

    Get PDF
    We prove lower bounds of order nlognn\log n for both the problem to multiply polynomials of degree nn, and to divide polynomials with remainder, in the model of bounded coefficient arithmetic circuits over the complex numbers. These lower bounds are optimal up to order of magnitude. The proof uses a recent idea of R. Raz [Proc. 34th STOC 2002] proposed for matrix multiplication. It reduces the linear problem to multiply a random circulant matrix with a vector to the bilinear problem of cyclic convolution. We treat the arising linear problem by extending J. Morgenstern's bound [J. ACM 20, pp. 305-306, 1973] in a unitarily invariant way. This establishes a new lower bound on the bounded coefficient complexity of linear forms in terms of the singular values of the corresponding matrix. In addition, we extend these lower bounds for linear and bilinear maps to a model of circuits that allows a restricted number of unbounded scalar multiplications.Comment: 19 page

    Shadows and intersections: stability and new proofs

    Get PDF
    We give a short new proof of a version of the Kruskal-Katona theorem due to Lov\'asz. Our method can be extended to a stability result, describing the approximate structure of configurations that are close to being extremal, which answers a question of Mubayi. This in turn leads to another combinatorial proof of a stability theorem for intersecting families, which was originally obtained by Friedgut using spectral techniques and then sharpened by Keevash and Mubayi by means of a purely combinatorial result of Frankl. We also give an algebraic perspective on these problems, giving yet another proof of intersection stability that relies on expansion of a certain Cayley graph of the symmetric group, and an algebraic generalisation of Lov\'asz's theorem that answers a question of Frankl and Tokushige.Comment: 18 page
    corecore