1,000 research outputs found

    Computational Multiscale Methods

    Get PDF
    Many physical processes in material sciences or geophysics are characterized by inherently complex interactions across a large range of non-separable scales in space and time. The resolution of all features on all scales in a computer simulation easily exceeds today's computing resources by multiple orders of magnitude. The observation and prediction of physical phenomena from multiscale models, hence, requires insightful numerical multiscale techniques to adaptively select relevant scales and effectively represent unresolved scales. This workshop enhanced the development of such methods and the mathematics behind them so that the reliable and efficient numerical simulation of some challenging multiscale problems eventually becomes feasible in high performance computing environments

    Localization Analysis of an Energy-Based Fourth-Order Gradient Plasticity Model

    Full text link
    The purpose of this paper is to provide analytical and numerical solutions of the formation and evolution of the localized plastic zone in a uniaxially loaded bar with variable cross-sectional area. An energy-based variational approach is employed and the governing equations with appropriate physical boundary conditions, jump conditions, and regularity conditions at evolving elasto-plastic interface are derived for a fourth-order explicit gradient plasticity model with linear isotropic softening. Four examples that differ by regularity of the yield stress and stress distributions are presented. Results for the load level, size of the plastic zone, distribution of plastic strain and its spatial derivatives, plastic elongation, and energy balance are constructed and compared to another, previously discussed non-variational gradient formulation.Comment: 41 pages, 24 figures; moderate revision after the first round of review, Appendix A re-written completel

    The role of the patch test in 2D atomistic-to-continuum coupling methods

    Get PDF
    For a general class of atomistic-to-continuum coupling methods, coupling multi-body interatomic potentials with a P1-finite element discretisation of Cauchy--Born nonlinear elasticity, this paper adresses the question whether patch test consistency (or, absence of ghost forces) implies a first-order error estimate. In two dimensions it is shown that this is indeed true under the following additional technical assumptions: (i) an energy consistency condition, (ii) locality of the interface correction, (iii) volumetric scaling of the interface correction, and (iv) connectedness of the atomistic region. The extent to which these assumptions are necessary is discussed in detail.Comment: Version 2: correction of some minor mistakes, added discussion of multiple connected atomistic region, minor improvements of styl

    Stationary States and Asymptotic Behaviour of Aggregation Models with Nonlinear Local Repulsion

    Full text link
    We consider a continuum aggregation model with nonlinear local repulsion given by a degenerate power-law diffusion with general exponent. The steady states and their properties in one dimension are studied both analytically and numerically, suggesting that the quadratic diffusion is a critical case. The focus is on finite-size, monotone and compactly supported equilibria. We also investigate numerically the long time asymptotics of the model by simulations of the evolution equation. Issues such as metastability and local/ global stability are studied in connection to the gradient flow formulation of the model
    corecore