43 research outputs found

    A note on the efficient implementation of Hamiltonian BVMs

    Full text link
    We discuss the efficient implementation of Hamiltonian BVMs (HBVMs), a recently introduced class of energy preserving methods for canonical Hamiltonian systems, via their blended formulation. We also discuss the case of separable problems, for which the structure of the problem can be exploited to gain efficiency.Comment: 10 pages, 4 figure

    Enhanced HBVMs for the numerical solution of Hamiltonian problems with multiple invariants

    Full text link
    Recently, the class of energy-conserving Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs), has been proposed for the efficient solution of Hamiltonian problems, as well as for other types of conservative problems. In this paper, we report further advances concerning such methods, resulting in their enhanced version (Enhanced HBVMs, or EHBVMs). The basic theoretical results are sketched, along with a few numerical tests on a Hamiltonian problem, taken from the literature, possessing multiple invariants.Comment: 4 page

    Analisys of Hamiltonian Boundary Value Methods (HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems

    Full text link
    One main issue, when numerically integrating autonomous Hamiltonian systems, is the long-term conservation of some of its invariants, among which the Hamiltonian function itself. For example, it is well known that classical symplectic methods can only exactly preserve, at most, quadratic Hamiltonians. In this paper, a new family of methods, called "Hamiltonian Boundary Value Methods (HBVMs)", is introduced and analyzed. HBVMs are able to exactly preserve, in the discrete solution, Hamiltonian functions of polynomial type of arbitrarily high degree. These methods turn out to be symmetric, precisely A-stable, and can have arbitrarily high order. A few numerical tests confirm the theoretical results.Comment: 25 pages, 8 figures, revised versio

    Efficient implementation of geometric integrators for separable Hamiltonian problems

    Full text link
    We here investigate the efficient implementation of the energy-conserving methods named Hamiltonian Boundary Value Methods (HBVMs) recently introduced for the numerical solution of Hamiltonian problems. In this note, we describe an iterative procedure, based on a triangular splitting, for solving the generated discrete problems, when the problem at hand is separable.Comment: 4 page

    Arbitrarily high-order energy-preserving methods for simulating the gyrocenter dynamics of charged particles

    Get PDF
    Gyrocenter dynamics of charged particles plays a fundamental role in plasma physics. In particular, accuracy and conservation of energy are important features for correctly performing long-time simulations. For this purpose, we here propose arbitrarily high-order energy conserving methods for its simulation. The analysis and the efficient implementation of the methods are fully described, and some numerical tests are reported.Comment: 23 pages, 4 figure

    Efficient implementation of Radau collocation methods

    Get PDF
    In this paper we define an efficient implementation of Runge-Kutta methods of Radau IIA type, which are commonly used when solving stiff ODE-IVPs problems. The proposed implementation relies on an alternative low-rank formulation of the methods, for which a splitting procedure is easily defined. The linear convergence analysis of this splitting procedure exhibits excellent properties, which are confirmed by its performance on a few numerical tests.Comment: 19 pages, 3 figures, 9 table

    The Hamiltonian BVMs (HBVMs) Homepage

    Full text link
    Hamiltonian Boundary Value Methods (in short, HBVMs) is a new class of numerical methods for the efficient numerical solution of canonical Hamiltonian systems. In particular, their main feature is that of exactly preserving, for the numerical solution, the value of the Hamiltonian function, when the latter is a polynomial of arbitrarily high degree. Clearly, this fact implies a practical conservation of any analytical Hamiltonian function. In this notes, we collect the introductory material on HBVMs contained in the HBVMs Homepage, available at http://web.math.unifi.it/users/brugnano/HBVM/index.htmlComment: 49 pages, 16 figures; Chapter 4 modified; minor corrections to Chapter 5; References update

    Numerical Solution of ODEs and the Columbus' Egg: Three Simple Ideas for Three Difficult Problems

    Full text link
    On computers, discrete problems are solved instead of continuous ones. One must be sure that the solutions of the former problems, obtained in real time (i.e., when the stepsize h is not infinitesimal) are good approximations of the solutions of the latter ones. However, since the discrete world is much richer than the continuous one (the latter being a limit case of the former), the classical definitions and techniques, devised to analyze the behaviors of continuous problems, are often insufficient to handle the discrete case, and new specific tools are needed. Often, the insistence in following a path already traced in the continuous setting, has caused waste of time and efforts, whereas new specific tools have solved the problems both more easily and elegantly. In this paper we survey three of the main difficulties encountered in the numerical solutions of ODEs, along with the novel solutions proposed.Comment: 25 pages, 4 figures (typos fixed

    Analysis of Energy and QUadratic Invariant Preserving (EQUIP) methods

    Full text link
    In this paper we are concerned with the analysis of a class of geometric integrators, at first devised in [14, 18], which can be regarded as an energy-conserving variant of Gauss collocation methods. With these latter they share the property of conserving quadratic first integrals but, in addition, they also conserve the Hamiltonian function itself. We here reformulate the methods in a more convenient way, and propose a more refined analysis than that given in [18] also providing, as a by-product, a practical procedure for their implementation. A thorough comparison with the original Gauss methods is carried out by means of a few numerical tests solving Hamiltonian and Poisson problems.Comment: 28 pages, 2 figures, 4 table
    corecore