111 research outputs found

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Some results on (a:b)-choosability

    Get PDF
    A solution to a problem of Erd\H{o}s, Rubin and Taylor is obtained by showing that if a graph GG is (a:b)(a:b)-choosable, and c/d>a/bc/d > a/b, then GG is not necessarily (c:d)(c:d)-choosable. Applying probabilistic methods, an upper bound for the kthk^{th} choice number of a graph is given. We also prove that a directed graph with maximum outdegree dd and no odd directed cycle is (k(d+1):k)(k(d+1):k)-choosable for every k1k \geq 1. Other results presented in this article are related to the strong choice number of graphs (a generalization of the strong chromatic number). We conclude with complexity analysis of some decision problems related to graph choosability

    Acyclic 4-choosability of planar graphs without 4-cycles

    Get PDF
    summary:A proper vertex coloring of a graph GG is acyclic if there is no bicolored cycle in GG. In other words, each cycle of GG must be colored with at least three colors. Given a list assignment L={L(v) ⁣:vV}L=\{L(v)\colon v\in V\}, if there exists an acyclic coloring π\pi of GG such that π(v)L(v)\pi (v)\in L(v) for all vVv\in V, then we say that GG is acyclically LL-colorable. If GG is acyclically LL-colorable for any list assignment LL with L(v)k|L(v)|\ge k for all vVv\in V, then GG is acyclically kk-choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles is acyclically 4-choosable. However, this has been as yet verified only for some restricted classes of planar graphs. In this paper, we prove that every planar graph with neither 4-cycles nor intersecting ii-cycles for each i{3,5}i\in \{3,5\} is acyclically 4-choosable

    Facial unique-maximum colorings of plane graphs with restriction on big vertices

    Get PDF
    A facial unique-maximum coloring of a plane graph is a proper coloring of the vertices using positive integers such that each face has a unique vertex that receives the maximum color in that face. Fabrici and G\"{o}ring (2016) proposed a strengthening of the Four Color Theorem conjecturing that all plane graphs have a facial unique-maximum coloring using four colors. This conjecture has been disproven for general plane graphs and it was shown that five colors suffice. In this paper we show that plane graphs, where vertices of degree at least four induce a star forest, are facially unique-maximum 4-colorable. This improves a previous result for subcubic plane graphs by Andova, Lidick\'y, Lu\v{z}ar, and \v{S}krekovski (2018). We conclude the paper by proposing some problems.Comment: 8 pages, 5 figure
    corecore