34,595 research outputs found

    Linear recurrences and asymptotic behavior of exponential sums of symmetric boolean functions

    Get PDF
    In this paper we give an improvement of the degree of the homogeneous linear recurrence with integer coefficients that exponential sums of symmetric Boolean functions satisfy. This improvement is tight. We also compute the asymptotic behavior of symmetric Boolean functions and provide a formula that allows us to determine if a symmetric boolean function is asymptotically not balanced. In particular, when the degree of the symmetric function is a power of two, then the exponential sum is much smaller than 2n2^n.Comment: 18 pages, 3 figure

    Spectral Norm of Symmetric Functions

    Full text link
    The spectral norm of a Boolean function f:{0,1}n{1,1}f:\{0,1\}^n \to \{-1,1\} is the sum of the absolute values of its Fourier coefficients. This quantity provides useful upper and lower bounds on the complexity of a function in areas such as learning theory, circuit complexity, and communication complexity. In this paper, we give a combinatorial characterization for the spectral norm of symmetric functions. We show that the logarithm of the spectral norm is of the same order of magnitude as r(f)log(n/r(f))r(f)\log(n/r(f)) where r(f)=max{r0,r1}r(f) = \max\{r_0,r_1\}, and r0r_0 and r1r_1 are the smallest integers less than n/2n/2 such that f(x)f(x) or f(x)parity(x)f(x) \cdot parity(x) is constant for all xx with xi[r0,nr1]\sum x_i \in [r_0, n-r_1]. We mention some applications to the decision tree and communication complexity of symmetric functions

    Quadratization of Symmetric Pseudo-Boolean Functions

    Get PDF
    A pseudo-Boolean function is a real-valued function f(x)=f(x1,x2,,xn)f(x)=f(x_1,x_2,\ldots,x_n) of nn binary variables; that is, a mapping from {0,1}n\{0,1\}^n to R\mathbb{R}. For a pseudo-Boolean function f(x)f(x) on {0,1}n\{0,1\}^n, we say that g(x,y)g(x,y) is a quadratization of ff if g(x,y)g(x,y) is a quadratic polynomial depending on xx and on mm auxiliary binary variables y1,y2,,ymy_1,y_2,\ldots,y_m such that f(x)=min{g(x,y):y{0,1}m}f(x)= \min \{g(x,y) : y \in \{0,1\}^m \} for all x{0,1}nx \in \{0,1\}^n. By means of quadratizations, minimization of ff is reduced to minimization (over its extended set of variables) of the quadratic function g(x,y)g(x,y). This is of some practical interest because minimization of quadratic functions has been thoroughly studied for the last few decades, and much progress has been made in solving such problems exactly or heuristically. A related paper \cite{ABCG} initiated a systematic study of the minimum number of auxiliary yy-variables required in a quadratization of an arbitrary function ff (a natural question, since the complexity of minimizing the quadratic function g(x,y)g(x,y) depends, among other factors, on the number of binary variables). In this paper, we determine more precisely the number of auxiliary variables required by quadratizations of symmetric pseudo-Boolean functions f(x)f(x), those functions whose value depends only on the Hamming weight of the input xx (the number of variables equal to 11).Comment: 17 page
    corecore