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Quadratization of Symmetric
Pseudo-Boolean Functions

Martin Anthony Endre Boros Yves Crama Aritanan Gruber

Abstract.A pseudo-Boolean function is a real-valued function f(x) =
f(x1, x2, . . . , xn) of n binary variables; that is, a mapping from {0, 1}n to R. For
a pseudo-Boolean function f(x) on {0, 1}n, we say that g(x, y) is a quadratization
of f if g(x, y) is a quadratic polynomial depending on x and on m auxiliary bi-
nary variables y1, y2, . . . , ym such that f(x) = min{g(x, y) : y ∈ {0, 1}m} for all
x ∈ {0, 1}n. By means of quadratizations, minimization of f is reduced to minimiza-
tion (over its extended set of variables) of the quadratic function g(x, y). This is of
some practical interest because minimization of quadratic functions has been thor-
oughly studied for the last few decades, and much progress has been made in solving
such problems exactly or heuristically. A related paper (1) initiated a systematic
study of the minimum number of auxiliary y-variables required in a quadratization
of an arbitrary function f (a natural question, since the complexity of minimizing
the quadratic function g(x, y) depends, among other factors, on the number of bi-
nary variables). In this paper, we determine more precisely the number of auxiliary
variables required by quadratizations of symmetric pseudo-Boolean functions f(x),
those functions whose value depends only on the Hamming weight of the input x
(the number of variables equal to 1).

Acknowledgements: The second author thanks for partial support the National Science
Foundation (Grant IIS-1161476). The third author was partially funded by the Interuni-
versity Attraction Poles Programme initiated by the Belgian Science Policy Office (grant
P7/36) and by a sabbatical grant from FNRS.
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1 Quadratizations of pseudo-Boolean functions

A pseudo-Boolean function is a real-valued function f(x) = f(x1, x2, . . . , xn) of n binary
variables, a mapping from Bn to R. It is well-known that every pseudo-Boolean function
can be uniquely represented as a polynomial in its variables. Nonlinear binary optimization
problems, or pseudo-Boolean optimization (PBO) problems, of the form

min{f(x) : x ∈ {0, 1}n},

where f(x) is a pseudo-Boolean function, have attracted the attention of numerous re-
searchers, and they are notoriously difficult; see, e.g., (4). In recent years, several authors
have revisited an approach initially proposed by Rosenberg (14). This involves reducing
PBO to its quadratic case (QPBO) by relying on the following concept.

Definition 1.1 For a pseudo-Boolean function f(x) on Bn, we say that g(x, y) is a quadra-
tization of f if g(x, y) is a quadratic polynomial depending on x and on m auxiliary binary
variables y1, y2, . . . , ym, such that

f(x) = min{g(x, y) : y ∈ {0, 1}m} for all x ∈ Bn.

Clearly, if g(x, y) is a quadratization of f , then

min{f(x) : x ∈ {0, 1}n} = min{g(x, y) : x ∈ {0, 1}n, y ∈ {0, 1}m},

so that the minimization of f is reduced through this transformation to the QPBO problem
of minimizing g(x, y). We are also interested (see (1)) in special types of quadratizations,
which we call y-linear quadratizations, which contain no products of auxiliary variables. If
g(x, y) is a y-linear quadratization, then g can be written as

g(x, y) = q(x) +
m∑
i=1

ai(x)yi,

where q(x) is quadratic in x and each ai(x) is a linear function of x. When minimizing g
over y, each product ai(x)yi takes the value min{0, ai(x)}. Thus, y-linear quadratizations
can be viewed as piecewise linear functions of the x-variables.

Example: As an easy explicit example, consider the negative monomial

−
n∏
i=1

xi = −x1x2 . . . xn.
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This elementary pseudo-Boolean function has the following standard quadratization (Freed-
man and Drineas (7)):

sn(x1, . . . , xn, y) = y

(
n− 1−

n∑
i=1

xi

)
.

The reason is as follows: unless all the xi are 1, then the quantity in parentheses in the
expression for sn is non-negative and the minimum value of sn is therefore 0, obtained when
y = 0; and, if all xi are 1, the expression equals −y, minimized when y = 1, giving value −1.
In both cases, the minimum value of sn is the same as the value of the negative monomial.

Example: The positive monomial is the function
n∏
i=1

xi = x1x2 . . . xn.

Ishikawa (9) showed that it can be quadratized using
⌊
n−1
2

⌋
auxiliary variables, and this is

currently the best available bound for positive monomials; see also (6; 9).

Rosenberg (14) has proved that every pseudo-Boolean function f(x) has a quadratization,
and that a quadratization can be efficiently computed from the polynomial expression of
f . This also easily follows from our foregoing observations that every monomial has a
quadratization. (It is also the case — see (1) — that any pseudo-Boolean function has a
y-linear quadratization.) Of course, quadratic PBO problems remain difficult in general, but
this special class of problems has been thoroughly studied for the last few decades, and much
progress has been made in solving large instances of QPBO, either exactly or heuristically.
Quadratization has emerged in recent years as one of the most successful approach to the
solution of very large-scale PBO problems arising in computer vision applications. (See,
for instance, Boykov, Veksler and Zabih (3), Kolmogorov and Rother (10), Kolmogorov and
Zabik (11), Rother, Kolmogorov, Lempitsky and Szummer (16), Boros and Gruber (2), Fix,
Gruber, Boros and Zabih (6), Freedman and Drineas (7), Ishikawa (9), Ramalingam, Russell,
Ladický and Torr (13), Rother, Kohli, Feng and Jia (15).)

In a related paper, the present authors (1) initiated a systematic study of quadratizations
of pseudo-Boolean functions. We investigated the minimum number of auxiliary y-variables
required in a quadratization of an arbitrary pseudo-Boolean function. In this paper, our
focus is on symmetric pseudo-Boolean functions. A symmetric pseudo-Boolean function is
one in which the value of the function depends only on the weight of the input. More
precisely, a pseudo-Boolean function f : {0, 1}n → R is symmetric if there is a function
k : {0, 1, . . . , n} → R such that f(x) = k(l) = kl where l = wt(x) =

∑n
j=1 xj is the

Hamming weight (number of ones) of x. Note, for instance, that the positive and negative
monomials are symmetric. Here, we investigate the number of auxiliary variables required
in quadratizations of such functions.
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In Section 2, we present a representation theorem and corollaries, which provide useful ways
of expressing symmetric pseudo-Boolean functions. In Section 3 we explain how we can
use such representations to construct quadratizations, and we present the implications for
upper bounds on the number of auxiliary variables in Section 4. Section 5 presents two
types of lower bounds on the number of auxiliary variables for quadratizations of symmetric
functions: an existence result, establishing that there are symmetric functions needing a
rather large number of auxiliary variables; and a concrete lower bound on the number of
auxiliary variables in any y-linear quadratization of the parity function.

2 A representation theorem

We introduce a useful piece of notation: for any real number a, [a]− denotes min(a, 0), the
smaller of a and 0. In this section, we present a result that will be key in our approach
to obtaining quadratizations. This is a ‘representation theorem’ that expresses a symmetric
pseudo-Boolean function on variables x1, x2, . . . , xn as a linear combination of terms of the
form [a−

∑n
r=1 xr]

−, for a suitable range of values a.

Our main result, in its most general form, is as follows.

Theorem 2.1 Let 0 < εi ≤ 1, for i = 0, . . . n. Then every symmetric pseudo-Boolean
function f : {0, 1}n → R can be represented uniquely in the form

f(x) =
n∑
i=0

αi

[
i− εi −

n∑
r=1

xr

]−
.

When all the εi are equal, we can be more explicit about the coefficients in this representation.
Recall that kl = k(l) is the value of f(x) in any point x with Hamming weight equal to l.
We set k−1 = 0 by convention.

Theorem 2.2 Let 0 < ε ≤ 1. Then every symmetric pseudo-Boolean function
f : {0, 1}n → R can be represented uniquely in the form

f(x) =
n∑
i=0

αi

[
i− ε−

n∑
r=1

xr

]−
where, for j = 0, . . . n, the value of αj is

αj = −
j−2∑
i=0

(ε− 1)j−i−2

εj−i+1
ki +

(
1

ε
+

1

ε2

)
kj−1 −

1

ε
kj. (1)
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(The first sum in (1) is, by usual convention, taken to be 0 if j < 2.)

Proof of Theorem 2.1 When
∑n

r=1 xr = j, we should have f(x) = kj. So, to find a
coefficient vector α = (α0, α1, . . . , αn)T ∈ Rn+1 which establishes the required representation,
we need to find a solution to the following system of n+ 1 linear equations:

kj =
n∑
i=0

αi [i− εi − j]− =

j∑
i=0

αi (i− εi − j) for j = 0, . . . , n. (2)

The matrix underlying this system is the lower-triangular matrix

A =
(
[q − εq − p]−

)
p,q=1...n+1

=


−ε0 0 0 0 · · · 0
−1− ε0 −ε1 0 0 · · · 0
−2− ε0 −1− ε1 −ε2 0 · · · 0

...
...

...
... . . . ...

−n− ε0 −n+ 1− ε1 −n+ 2− ε2 −n+ 3− ε3 · · · −εn



Because A is lower-triangular with nonzero diagonal entries −εq (q = 0, . . . , n), this system
does indeed have a unique solution and therefore the representation exists and is unique. �

Proof of Theorem 2.2 We check that a solution (and hence the solution) of the system (2)
is given by (1) in the statement of the theorem.

We proceed by induction on j. The case j = 0 is easily verified, since the first equation in (2)
immediately yields α0 = −1

ε
k0, in agreement with (1). Assume now that (1) is satisfied by

the values of αi up to i = j − 1. Then, from (2) and from the induction hypothesis,

−εαj = kj +

j−1∑
i=0

αi (ε+ j − i)

= kj +

j−1∑
i=0

αi (ε+ j − 1− i) +

j−1∑
l=0

αl

= kj − kj−1 +

j−1∑
l=0

αl. (3)
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Substituting (1) in the last term of (3) yields

j−1∑
l=0

αl =

j−1∑
l=0

[
−

l−2∑
i=0

(ε− 1)l−i−2

εl−i+1
ki +

(
1

ε
+

1

ε2

)
kl−1 −

1

ε
kl

]

= −
j−3∑
i=0

ki

j−1∑
l=i+2

(ε− 1)l−i−2

εl−i+1
+

(
1

ε
+

1

ε2

) j−1∑
l=0

kl−1 −
1

ε

j−1∑
l=0

kl

= −
j−3∑
i=0

ki

j−i−3∑
t=0

(ε− 1)t

εt+3
− 1

ε
kj−1 +

1

ε2

j−1∑
l=0

kl−1 (4)

=

j−3∑
i=0

(ε− 1)j−i−2

εj−i
ki −

1

ε
kj−1 +

1

ε2
kj−2 (5)

where the last equality is obtained by summing the geometric series which appears in the
first sum of equation (4).

Combining (3) and (5), we find

αj = −
j−3∑
i=0

(ε− 1)j−i−2

εj−i+1
ki −

1

ε3
kj−2 +

(
1

ε
+

1

ε2

)
kj−1 −

1

ε
kj,

which is equivalent to (1). �

There are two special cases of Theorem 2.2 that we will use in particular.

When ε = 1/2, Theorem 2.2 yields:

Corollary 2.3 Every symmetric pseudo-Boolean function f : {0, 1}n → R can be repre-
sented uniquely in the form

f(x) =
n∑
i=0

αi

[
i− 1

2
−

n∑
r=1

xr

]−
where

αi = −8
i∑

j=0

(−1)i−jkj − 2ki−1 + 6ki

for i = 0, . . . n, and k−1 = 0.

Taking ε = 1 in Theorem 2.2, we obtain the following.
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Corollary 2.4 Every symmetric pseudo-Boolean function f : {0, 1}n → R can be repre-
sented in the form

f(x) = k0 + (k1 − k0)
n∑
r=1

xr +
n−1∑
i=1

(−ki−1 + 2ki − ki+1)

[
i−

n∑
r=1

xr

]−
.

In fact, Corollary 2.4 follows from work of Fix (5), and a simpler direct proof can be given.
As Fix observed, if

∑n
r=1 xr = l, then

f(x) = k(l) =
n∑
i=0

k(i)δi(l)

where δi(l) = 1 if i = l and δi(l) = 0 otherwise. Then, it can be seen that

δi(l) = − [i− 1− l]− + 2 [i− l]− − [i+ 1− l]− .

From this, it follows that

f(x) =
n∑
i=0

k(i)
(
− [i− 1− l]− + 2 [i− l]− − [i+ 1− l]−

)
.

On simplification, this gives

f(x) = k0 + l(k1 − k0) +
n−1∑
i=1

(−ki−1 + 2ki − ki+1) [i− l]− ,

as required.

3 From representations to quadratizations

In this section we explain how a representation of the type presented in the previous section
can be used to construct quadratizations of pseudo-Boolean functions. One useful observa-
tion is that when a coefficient αi is non-negative, the corresponding term αi [i− εi −

∑n
r=1 xr]

−

in the representation of Theorem 2.1 of f can be quadratized as minyi αiyi(i− εi−
∑n

r=1 xr).
But this translation simply does not work if αi is negative. The strategy described in this
section is to take an expression as given in Theorem 2.1 (or one of its special cases) and add
a quantity that is identically 0 and which will result in a final expression that has no terms
with negative coefficients. The following Lemma describes three possible such quantities.
The first is going to be useful when working with representations of the form given in Corol-
lary 2.4, and the second and third will be useful when working with the representations from
Corollary 2.3.
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Lemma 3.1 Let

E(l) = l(l − 1) + 2
n−1∑
i=1

[i− l]− ,

E ′(l) =
l(l − 1)

2
+ 2

n∑
i=2:
i even

[
i− 1

2
− l
]−

,

and

E ′′(l) =
l(l + 1)

2
+ 2

n∑
i=1:
i odd

[
i− 1

2
− l
]−

.

Then, for all l = 0, . . . , n, E(l) = E ′(l) = E ′′(l) = 0.

Proof:First we show that E(l) is identically-0. We have

E(l) = l(l − 1) + 2
n−1∑
i=1

[i− l]−

= l(l − 1) + 2
l−1∑
i=1

(i− l)

= l(l − 1)− 2
l−1∑
j=1

j

= l(l − 1)− l(l − 1) = 0.

We next show that E ′(l) = 0 for all values of l. Fix l and note that i− 1
2
− l ≤ 0 if and only

if i ≤ l. Hence,

n∑
i=2:
i even

[
i− 1

2
− l
]−

=
l∑

i=2:
i even

(
i− 1

2
− l
)

=
l∑

i=2:
i even

i−
(

1

2
+ l

)⌊
l

2

⌋
. (6)

By considering separately the cases where l is respectively even or odd, one can conclude that
E ′(l) = 0 for all l = 0, . . . , n. For, if l = 2r, then the expression on the right in equation (6)
is r/2 − r2 = −l(l − 1)/4 and, if l = 2r + 1, it is −r/2 − r2 = −l(l − 1)/4. The identity
E ′′(l) = 0 (for all l) can be proved similarly, or can be deduced from the previous one by
observing that, for all l = 0, . . . , n,

n∑
i=1

[
i− 1

2
− l
]−

=
l∑

i=1

(
i− 1

2
− l
)

= −1

2
l2.
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We then can note that

E ′(l) + E ′′(l) = l2 + 2
n∑
i=1

[
i− 1

2
− l
]−

= l2 − l2 = 0,

so that E ′′ = −E ′ = 0. �

We gave a direct, self-contained, proof of Lemma 3.1, but in fact these three identities
follow from Corollary 2.3 and Corollary 2.4. For, if we apply Corollary 2.4 to the function
f(x) =

∑n
r=1 xr (

∑n
r=1 xr − 1), we see that

f(x) = −2
n−1∑
i=1

[
i−

n∑
r=1

xi

]−
,

which implies the first identity of Lemma 3.1. Applying Corollary 2.3 to f(x) shows (after
some calculation) that

f(x) = −4
n∑

i=2:
i even

[
i− 1

2
− l
]−

,

giving the second identity (that E ′ is identically-0). Applying Corollary 2.3 to the function
g(x) =

∑n
r=1 xr (

∑n
r=1 xr + 1) yields the third identity.

4 Upper bounds on number of auxiliary variables

4.1 Any symmetric function

We first have the following very general result, which provides an explicit construction of a
quadratization of any pseudo-Boolean function, using no more than n−2 auxiliary variables.

Theorem 4.1 Every symmetric function of n variables can be quadratized using n− 2 aux-
iliary variables.

Proof:Using Corollary 2.3, we can write any symmetric function f as

f(x) = −α0

(
1

2
+

n∑
j=1

xj

)
+

n∑
i=1

αi

[
i− 1

2
−

n∑
j=1

xj

]−
.
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Let αr = min{αi : i even, i ≥ 2} and αs = min{αi : i odd}. Now add to f the expression

−αr
2
E ′(

n∑
j=1

xj)−
αs
2
E ′′(

n∑
j=1

xj),

which is identically-0. This results in an expression for f of the form

f(x) = a0 + a1

n∑
j=1

xj + a2
∑

1≤i<j≤n

xixj +
n∑
i=1

βi

[
i− 1

2
−

n∑
j=1

xj

]−
,

where, for each i, if i is even, βi = αi − αr ≥ 0, and if i is odd, βi = αi − αs ≥ 0. So all the
coefficients βi are non-negative. Furthermore, βr = βs = 0, so we have an expression for f
involving no more than n− 2 positive coefficients βi. Then,

g(x, y) = a0 + a1

n∑
j=1

xj + a2
∑

1≤i<j≤n

xixj +
n∑

i=1:
i6=r,s

βiyi

(
i− 1

2
−

n∑
j=1

xj

)

is a quadratization of f involving at most n− 2 auxiliary variables. �

(A construction in (5) shows an upper bound of n−1. This is obtained by adding a multiple of
E(
∑r

r=1 xr) to each term in the expression from Corollary 2.4, rather than to the expression
as a whole, resulting in more complex quadratizations.)

Notice that the quadratization in the proof of Theorem 4.1 is y-linear, so we have in fact
shown:

Theorem 4.2 Every symmetric function of n variables has a y-linear quadratization involv-
ing at most n− 2 auxiliary variables.

Furthermore, these quadratizations are also symmetric in the x-variables. Not every quadra-
tization of a symmetric function must itself be symmetric in the original variables. For
example, consider the negative monomial −

∏n
i=1 xi = −x1x2 . . . xn. As we have seen, this

has the quadratization y
(
n− 1−

∑n
j=1 xj

)
, which is symmetric. However, it also has the

quadratization (n− 2)xny−
∑n−1

i=1 xi(y− xn), where xn = 1− xn, which is not symmetric in
the x-variables.
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4.2 Monomials

The quadratization of monomials (positive and negative) has been fairly well-studied. The
standard quadratization of the negative monomial

f(x) = −
n∏
i=1

xi = −x1x2 . . . xn,

is

sn(x1, . . . , xn, y) = y

(
n− 1−

n∑
j=1

xj

)
.

(A related paper by the present authors (1) gives a complete characterization of all the
quadratizations of negative monomials involving one auxiliary variable and this is, in a
sense, one of the simplest.) If we apply Corollary 2.3 to the neagtive monomial, noting that
ki = 0 for i < n and kn = −1, we obtain the representation

f(x) = 2

[
n− 1

2
−

n∑
r=1

xr

]−
,

which immediately leads to the quadratization

h = 2y

(
n− 1

2
−

n∑
r=1

xr

)
,

only slightly different from the standard one. We could, instead, apply Corollary 2.4, which
would show that f(x) = [n− 1−

∑n
r=1 xr]

−
, from which we immediately obtain the standard

quadratization.

As we noted earlier, the best known result (smallest number of auxiliary variables) for
positive monomials is that they can be quadratized using

⌊
n−1
2

⌋
auxiliary variables. This

was shown by Ishikawa (9). We can see that this many auxiliary variables suffice by using
our representation theorem, Corollary 2.3, together with the argument given in the proof of
Theorem 4.1.

Theorem 4.3 The positive monomial P =
∏n

i=1 xi can be quadratized using
⌊
n−1
2

⌋
auxiliary

variables.

Proof:Consider first the case where n is even. By Corollary 2.3, noting that ki = 0 for i < n
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and kn = 1, we have P = −2
[
n− 1

2
− l
]− where l =

∑n
r=1 xr. By Lemma 3.1,

P = −2

[
n− 1

2
− l
]−

+ E ′(l)

=
l(l − 1)

2
+

n−2∑
i=2:

i even

2

[
i− 1

2
− l
]−

=
∑

1≤i<j≤n

xixj + min
y

n−2∑
i=2:

i even

2yi

(
i− 1

2
− l
)
.

This provides the required quadratization using n
2
− 1 =

⌊
n−1
2

⌋
new variables.

When n is odd, one similarly derives the following from Lemma 3.1:

P = −2

[
n− 1

2
− l
]−

+ E ′′(l)

=
n∑
i=1

xi +
∑

1≤i<j≤n

xixj + min
y

n−2∑
i=1:
i odd

2yi

(
i− 1

2
− l
)
.

�

This quadratization of P requires the same number of auxiliary variables as Ishikawa’s con-
struction. Both quadratizations are, in fact, identical when n is even, but appear to be
different when n is odd.

Note that an alternative approach to the case of odd n would be as follows. Write P =∏n−1
i=1 xi−

∏n−1
i=1 xixn, where xn = 1−xn. The first term can now be quadratized using n−1

2
−1

new variables (since it contains an even number of variables), and the second term, viewed as
a negative monomial in x1, . . . , xn−1, xn, has a standard quadratization requiring one further
auxiliary variable. Thus, this leads again to a quadratization of P with n−1

2
=
⌊
n−1
2

⌋
new

variables. This quadratization is also different from Ishikawa’s.

4.3 t-out of n function

Consider now the t-out-of-n function defined by: ft,n(x) = 1 if and only if
∑n

i=i xi ≥ t.

Corollary 4.4 The t-out-of-n function ft,n can be quadratized using
⌈
n
2

⌉
auxiliary variables.
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Proof:From Corollary 2.3, ft,n can be represented in the form

ft,n(x) =
n∑
i=0

αi

[
i− 1

2
−

n∑
j=1

xj

]−
where αi = 0 when i < t, αt = −2, and αi = 4(−1)i−t−1 when i > t.

Since the terms of ft,n alternate in sign when i ≥ t, we can again use Lemma 3.1 to make all
coefficients non-negative by adding either 2E ′(l) or 2E ′′(l) to (7), depending on the parity
of t. The resulting expression has

⌈
n
2

⌉
positive coefficients, and its remaining coefficients are

zero. Thus, it can be quadratized with
⌈
n
2

⌉
auxiliary variables. �

4.4 Parity and its complement

The parity function is the (pseudo-)Boolean function Π(x) such that Π(x) = 1 if the Ham-
ming weight of x is odd, and Π(x) = 0 otherwise. To derive a quadratization of this function,
we will use Corollary 2.4 rather than Corollary 2.3, and will make use of a variant of the
argument given to establish Theorem 4.1. By Corollary 2.4, we can see that Π has the
representation

Π(x) =
n∑
j=1

xj + 2
n−1∑
i=1

(−1)i−1

[
i−

n∑
j=1

xj

]−
. (7)

Let E(l) be as in Lemma 3.1. By adding E(
∑n

j=1 xj) to this representation of Π, we obtain
a representation with non-negative coefficients, which leads to a quadratization with m =
bn/2c auxiliary variables: Π(x) = miny∈{0,1}m g(x, y) where

g(x, y) = 2
∑
i<j

xixj +
n∑
j=1

xj + 4
n−1∑
i=1
i odd

yi

(
i−

n∑
j=1

xj

)
.

(The terms with coefficient −2 in the expansion (7) disappear on the addition of E.)

The complement, Π̄ of Π can be represented as

Π̄(x) = 1−
n∑
j=1

xj + 2
n−1∑
i=1

(−1)i

[
i−

n∑
j=1

xj

]−
,

so, by adding E(
∑n

j=1 xj), to eliminate negative coefficients, we arrive at the following
quadratization involving m = b(n− 1)/2c auxiliary variables:

g′(x, y) = 1 + 2
∑
i<j

xixj −
n∑
j=1

xj + 4
n−1∑
i=2

i even

yi

(
i−

n∑
j=1

xj

)
.
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So we conclude the following:

Theorem 4.5 The parity function of n variables has a y-linear quadratization involving
bn/2c auxiliary variables, and its complement has a y-linear quadratization involving b(n− 1)/2c
auxiliary variables.

5 Lower bounds on the number of auxiliary
variables

5.1 Generic lower bounds

The following result is inspired by (but is different and does not follow from) a transforma-
tion given in Siu, Roychowdhury and Kailath (18), in the framework of the representation of
Boolean functions by threshold circuits. This result relates quadratizations of arbitrary (pos-
sibly non-symmetric) pseudo-Boolean functions to the quadratization of symmetric functions
on a larger, related, number of variables. We will then use a lower bound result from (1) in
order to obtain a lower bound result for symmetric functions.

Lemma 5.1 Suppose that n,m are positive integers and suppose that every symmetric
pseudo-Boolean function F (z) of N = 2n−1 variables (that is, every symmetric function F :
{0, 1}2n−1 → R) has an m-quadratization. Then every (arbitrary) pseudo-Boolean function
f(x) on {0, 1}n also has an m-quadratization.

Proof:Let f(x) be an arbitrary pseudo-Boolean function of n variables. We are going to
construct a sequence of four functions k, F , G, g, such that g is a quadratization of f . For
this purpose, let N = 2n − 1.

1. Let k : {0, 1, . . . , N} → R be defined as follows: k(w) := f(x) where x is the binary
representation of w, that is, w =

∑n
i=1 2i−1xi.

2. Let F be the symmetric pseudo-Boolean function of N variables defined by: for all
z ∈ BN , F (z) := k(w(z)), where w(z) is the Hamming weight of z. (This defines F
completely, given that it is symmetric.)

3. Let G(z, y) be an arbitrary quadratization of F (z) using m auxiliary variables. (The
hypothesis of the theorem is that such quadratizations exist.)
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4. Finally, let g(x, y) be the pseudo-Boolean function on Bn+m that is obtained by iden-
tifying each of the variables z2j−1 , z2j−1+1, . . . , z2j−1 with xj in G(z, y), for j = 1, . . . , n;
that is,

g(x1, x2, x3, . . . , xn, y) := G(x1, x2, x2, x3, x3, x3, x3, . . . , xn, . . . , xn, y).

We claim that g(x, y) is a quadratization of f . Indeed, g is clearly quadratic, because G is.
Moreover, for every point x ∈ Bn,

min{g(x, y) | y ∈ Bm}
= min{G(x1, x2, x2, x3, x3, x3, x3, . . . , xn, y) | y ∈ Bm} (8)
= F (x1, x2, x2, x3, x3, x3, x3, . . . , xn) (9)

= k(
n∑
i=1

2i−1xi) (10)

= f(x) (11)

(where equality (8) is by definition of g, (9) is by definition of G, (10) is by definition of F ,
and (11) is by definition of k). �

We will now make use of the following result from (1).

Theorem 5.2 There are pseudo-Boolean functions of n variables for which any quadratiza-
tion must involve at least Ω(2n/2) auxiliary variables.

To be more concrete, the analysis in (1) implies that for any n ≥ 8, there is a pseudo-Boolean
function on n variables for which any quadratization will require at least 2n/2/8 auxiliary
variables.

This leads to the following lower bound result for symmetric functions.

Theorem 5.3 There exist symmetric functions of n variables for which any quadratization
must involve at least Ω(

√
n) auxiliary variables.

Proof:Lemma 5.1 shows that, if every symmetric function F (z) on {0, 1}N , with N = 2n− 1,
has an m-quadratization, then every (arbitrary) function f(x) on {0, 1}n also has an m-
quadratization. On the other hand, from Theorem 5.2, we know that some pseudo-Boolean



Page 16 RRR 12-2013

functions on n variables require Ω(2n/2) auxiliary variables. It follows that some symmet-
ric functions on N variables must need Ω(

√
N) auxiliary variables in every quadratization. �

We also have a similar lower bound result for y-linear quadratizations. It rests on the
following result from (1):

Theorem 5.4 There are pseudo-Boolean functions of n variables for which any y-linear
quadratization must involve at least Ω(2n/n) auxiliary variables.

We then have the following.

Theorem 5.5 There exist symmetric functions of n variables for which any y-linear quadra-
tization must involve at least Ω(n/ log n) auxiliary variables.

Proof:The proof is similar to the previous one: it suffices to observe that when G(z, y) is
y-linear, then so is g(x, y), and to rely on the generic lower bound Ω(2n/n) of Theorem 5.4
for the number of auxiliary variables required in every y-linear quadratization of certain
pseudo-Boolean functions. �

Note that the lower bound in Theorem 5.5 for the number of auxiliary variables in y-linear
quadratizations comes within a factor O(log n) of the upper bound of n−2 from Theorem 4.2.

5.2 A lower bound for the parity function

The results just obtained prove the existence of symmetric pseudo-Boolean functions which
require a significant number of auxiliary variables to quadratize. Specifically, there exist
functions needing Ω(

√
n) auxiliary variables in any quadratization, and functions needing

Ω(n/ log n) auxiliary variables in any y-linear quadratization. Those results do not, however,
explicitly exhibit particular such functions. We next give a concrete example of a function
which needs a significant number of auxiliary variables in any y-linear quadratization.

Theorem 5.6 Every y-linear quadratization of the parity function on n variables must in-
volve at least Ω(

√
n) auxiliary variables.
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Proof:Let g(x, y) be an arbitrary y-linear quadratization of the parity function. Then it can
be written as

g(x, y) = q(x) +
m∑
i=1

yi(`i(x)− bi) (12)

where q(x) is quadratic, and `1(x), . . . , `m(x) are linear functions of x only.

For each i ∈ [m] = {1, 2, . . . ,m}, consider the regions

R+
i = {x ∈ Rn | `i(x) ≥ bi}, R−i = {x ∈ Rn | `i(x) ≤ bi},

which are closed half-spaces defined by the linear functions `i. For each S ⊆ [m], let RS

denote the region RS =
(⋂

i∈S R
−
i

)
∩
(⋂

i 6∈S R
+
i

)
. This is one of the ‘cells’ into which the m

hyperplanes defining the linear functions `i partition Rn.

On every cell RS, the function f(x) = min{g(x, y) | y ∈ Bm} is quadratic. Indeed, on R(S),
we have

min{g(x, y) | y ∈ Bm} = q(x) +
∑
i∈S

(`i(x)− bi).

We now use a result from Saks (17) and Impagliazzo, Paturi and Saks (8) (which was used to
obtain lower bounds on the size of threshold circuits representing the parity function). Let
us say that a set of hyperplanes slices all r-dimensional subcubes of the Boolean hypercube
{0, 1}n if for each subcube (or face) of {0, 1}n of dimension r, there are two vertices of the sub-
cube that lie on opposite sides of one of these hyperplanes. Then (Proposition 3.82 of (17)),
if a set of m hyperplanes slices all r-dimensional subcubes, we have m >

√
n/(r + 1)− 1.

In particular, therefore, any set of hyperplanes that slices every 3-dimensional subcube of
{0, 1}n must contain more than

√
n/4− 1 planes. Suppose the hyperplanes defined by the

linear functions `i do not slice all 3-dimensional subcubes. Then there would be some cell RS

containing a subcube of dimension 3. The parity function restricted to that subcube would
then be equal to the quadratic expression q(x) +

∑
i∈S(`i(x)− bi). However, it is well-known

(see, for instance (17; 12; 19)) that the parity function on a subcube of dimension r cannot
be represented as a pseudo-Boolean function of degree less than r (and it cannot even be
represented as the sign of a pseudo-Boolean function of degree less than r). So, we would
then have a quadratic, degree-2, representation of parity on a cube of dimension 3, which
is not possible. It follows, therefore, that the set of hyperplanes in question must slice all
3-dimensional subcubes and therefore has size m >

√
n/4− 1. �
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6 Conclusions

In this paper, we have studied the number of auxiliary variables required in quadratizations
(and y-linear quadratizations) of symmetric pseudo-Boolean function. We have presented
explicit general constructions of quadratizations, via special types of representations of the
functions. This shows that every such function can be quadratized (with a y-linear quadra-
tization, symmetric in the original variables) using at most n − 2 auxiliary variables. We
investigated in more detail the quadratizations of special functions (monomials, t-out-of-n
functions, and parity), where it was possible to obtain quadratizations using significantly
fewer than n − 2 auxiliary variables. By drawing on a general result from our related pa-
per (1) and establishing a connection between quadratizations of general functions and of
symmetric functions on a related number of variables, we showed that there exist symmet-
ric functions requiring Ω(

√
n) auxiliary variables in any quadratization, and that y-linear

quadratization can require Ω(n/ log n) variables. It would clearly be of interest to close the
gaps between these lower bounds and the linear upper bound. We established, further, that
any y-linear representation of the parity function needs Ω(

√
n) auxiliary variables. An open

question is to determine whether a similar (or better) lower bound can be obtained for any
(not necessarily y-linear) quadratization of this, or another specific, symmetric function.
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