17,684 research outputs found

    Sparse Recovery of Positive Signals with Minimal Expansion

    Get PDF
    We investigate the sparse recovery problem of reconstructing a high-dimensional non-negative sparse vector from lower dimensional linear measurements. While much work has focused on dense measurement matrices, sparse measurement schemes are crucial in applications, such as DNA microarrays and sensor networks, where dense measurements are not practically feasible. One possible construction uses the adjacency matrices of expander graphs, which often leads to recovery algorithms much more efficient than â„“1\ell_1 minimization. However, to date, constructions based on expanders have required very high expansion coefficients which can potentially make the construction of such graphs difficult and the size of the recoverable sets small. In this paper, we construct sparse measurement matrices for the recovery of non-negative vectors, using perturbations of the adjacency matrix of an expander graph with much smaller expansion coefficient. We present a necessary and sufficient condition for â„“1\ell_1 optimization to successfully recover the unknown vector and obtain expressions for the recovery threshold. For certain classes of measurement matrices, this necessary and sufficient condition is further equivalent to the existence of a "unique" vector in the constraint set, which opens the door to alternative algorithms to â„“1\ell_1 minimization. We further show that the minimal expansion we use is necessary for any graph for which sparse recovery is possible and that therefore our construction is tight. We finally present a novel recovery algorithm that exploits expansion and is much faster than â„“1\ell_1 optimization. Finally, we demonstrate through theoretical bounds, as well as simulation, that our method is robust to noise and approximate sparsity.Comment: 25 pages, submitted for publicatio

    Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

    Get PDF
    This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements -- L_1-minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of the Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of the L_1-minimization. Our algorithm ROMP reconstructs a sparse signal in a number of iterations linear in the sparsity (in practice even logarithmic), and the reconstruction is exact provided the linear measurements satisfy the Uniform Uncertainty Principle.Comment: This is the final version of the paper, including referee suggestion

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming

    Full text link
    Given a linear system in a real or complex domain, linear regression aims to recover the model parameters from a set of observations. Recent studies in compressive sensing have successfully shown that under certain conditions, a linear program, namely, l1-minimization, guarantees recovery of sparse parameter signals even when the system is underdetermined. In this paper, we consider a more challenging problem: when the phase of the output measurements from a linear system is omitted. Using a lifting technique, we show that even though the phase information is missing, the sparse signal can be recovered exactly by solving a simple semidefinite program when the sampling rate is sufficiently high, albeit the exact solutions to both sparse signal recovery and phase retrieval are combinatorial. The results extend the type of applications that compressive sensing can be applied to those where only output magnitudes can be observed. We demonstrate the accuracy of the algorithms through theoretical analysis, extensive simulations and a practical experiment.Comment: Parts of the derivations have submitted to the 16th IFAC Symposium on System Identification, SYSID 2012, and parts to the 51st IEEE Conference on Decision and Control, CDC 201
    • …
    corecore