23,930 research outputs found

    Quantum Commuting Circuits and Complexity of Ising Partition Functions

    Get PDF
    Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal in the sense of standard quantum computation. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy (PH) collapses at the third level, which is highly implausible. However, the origin of the classical intractability is still less understood. Here we establish a relationship between IQP and computational complexity of the partition functions of Ising models. We apply the established relationship in two opposite directions. One direction is to find subclasses of IQP that are classically efficiently simulatable in the strong sense, by using exact solvability of certain types of Ising models. Another direction is applying quantum computational complexity of IQP to investigate (im)possibility of efficient classical approximations of Ising models with imaginary coupling constants. Specifically, we show that there is no fully polynomial randomized approximation scheme (FPRAS) for Ising models with almost all imaginary coupling constants even on a planar graph of a bounded degree, unless the PH collapses at the third level. Furthermore, we also show a multiplicative approximation of such a class of Ising partition functions is at least as hard as a multiplicative approximation for the output distribution of an arbitrary quantum circuit.Comment: 36 pages, 5 figure

    Exponential renormalization

    Full text link
    Moving beyond the classical additive and multiplicative approaches, we present an "exponential" method for perturbative renormalization. Using Dyson's identity for Green's functions as well as the link between the Faa di Bruno Hopf algebra and the Hopf algebras of Feynman graphs, its relation to the composition of formal power series is analyzed. Eventually, we argue that the new method has several attractive features and encompasses the BPHZ method. The latter can be seen as a special case of the new procedure for renormalization scheme maps with the Rota-Baxter property. To our best knowledge, although very natural from group-theoretical and physical points of view, several ideas introduced in the present paper seem to be new (besides the exponential method, let us mention the notions of counterfactors and of order n bare coupling constants).Comment: revised version; accepted for publication in Annales Henri Poincar

    Distance matrices of a tree: two more invariants, and in a unified framework

    Full text link
    Graham-Pollak showed that for D=DTD = D_T the distance matrix of a tree TT, det(D)(D) depends only on its number of edges. Several other variants of DD, including directed/multiplicative/qq- versions were studied, and always, det(D)(D) depends only on the edge-data. We introduce a general framework for bi-directed weighted trees, with threefold significance. First, we improve on state-of-the-art for all known variants, even in the classical Graham-Pollak case: we delete arbitrary pendant nodes (and more general subsets) from the rows/columns of DD, and show these minors do not depend on the tree-structure. Second, our setting unifies all known variants (with entries in a commutative ring). We further compute in closed form the inverse of DD, extending a result of Graham-Lovasz [Adv. Math. 1978] and answering a question of Bapat-Lal-Pati [Lin. Alg. Appl. 2006]. Third, we compute a second function of the matrix DD: the sum of all its cofactors, cof(D)(D). This was worked out in the simplest setting by Graham-Hoffman-Hosoya (1978), but is relatively unexplored for other variants. We prove a stronger result, in our general setting, by computing cof(.)(.) for minors as above, and showing these too depend only on the edge-data. Finally, we show our setting is the 'most general possible', in that with more freedom in the edgeweights, det(D)(D) and cof(D)(D) depend on the tree structure. In a sense, this completes the study of the invariant det(DT)(D_T) (and cof(DT)(D_T)) for trees TT with edge-data in a commutative ring. Moreover: for a bi-directed graph GG we prove multiplicative Graham-Hoffman-Hosoya type formulas for det(DG)(D_G), cof(DG)(D_G), DG1D_G^{-1}. We then show how this subsumes their 1978 result. The final section introduces and computes a third, novel invariant for trees and a Graham-Hoffman-Hosoya type result for our "most general" distance matrix DTD_T.Comment: 42 pages, 2 figures; minor edits in the proof of Theorems A and 1.1
    corecore