99,617 research outputs found

    A note on perfect revivals in finite waveguide arrays

    Get PDF
    We propose a simple and algorithmic method for designing finite waveguide arrays capable of diffractionless transmission of arbitrary discrete beams by virtue of perfect revivals. Our approach utilizes an inverse matrix eignevalue theorem published by Hochstadt in 1974, which states that the Jacobi matrix, describing the system’s discrete evolution equations, is uniquely determined by its eigenvalues and the eigenvalues of its largest leading principal submatrix, as long as the two sets of eigenvalues interlace. It is further shown that, by arranging the two sets of eigenvalues symmetrically with respect to zero, the resulting Jacobi matrix has zero diagonal elements. Therefore, arrays with arbitrary revival lengths can be obtained by engineering only the inter-waveguide couplings

    Optimal Ramp Schemes and Related Combinatorial Objects

    Get PDF
    In 1996, Jackson and Martin proved that a strong ideal ramp scheme is equivalent to an orthogonal array. However, there was no good characterization of ideal ramp schemes that are not strong. Here we show the equivalence of ideal ramp schemes to a new variant of orthogonal arrays that we term augmented orthogonal arrays. We give some constructions for these new kinds of arrays, and, as a consequence, we also provide parameter situations where ideal ramp schemes exist but strong ideal ramp schemes do not exist

    Anti-ferromagnetic ordering in arrays of superconducting pi-rings

    Get PDF
    We report experiments in which one dimensional (1D) and two dimensional (2D) arrays of YBa2Cu3O7-x-Nb pi-rings are cooled through the superconducting transition temperature of the Nb in various magnetic fields. These pi-rings have degenerate ground states with either clockwise or counter-clockwise spontaneous circulating supercurrents. The final flux state of each ring in the arrays was determined using scanning SQUID microscopy. In the 1D arrays, fabricated as a single junction with facets alternating between alignment parallel to a [100] axis of the YBCO and rotated 90 degrees to that axis, half-fluxon Josephson vortices order strongly into an arrangement with alternating signs of their magnetic flux. We demonstrate that this ordering is driven by phase coupling and model the cooling process with a numerical solution of the Sine-Gordon equation. The 2D ring arrays couple to each other through the magnetic flux generated by the spontaneous supercurrents. Using pi-rings for the 2D flux coupling experiments eliminates one source of disorder seen in similar experiments using conventional superconducting rings, since pi-rings have doubly degenerate ground states in the absence of an applied field. Although anti-ferromagnetic ordering occurs, with larger negative bond orders than previously reported for arrays of conventional rings, long-range order is never observed, even in geometries without geometric frustration. This may be due to dynamical effects. Monte-Carlo simulations of the 2D array cooling process are presented and compared with experiment.Comment: 10 pages, 15 figure
    corecore