
ACMAC’s PrePrint Repository

A note on perfect revivals in finite waveguide arrays

Ioannis Chremmos and Nikolaos K. Efremidis

Original Citation:

Chremmos, Ioannis and Efremidis, Nikolaos K.

(2012)

A note on perfect revivals in finite waveguide arrays.

Optics Communications, Elsevier, 285 (21-22). pp. 4364-4367. ISSN 0030-4018

This version is available at: http://preprints.acmac.uoc.gr/144/
Available in ACMAC’s PrePrint Repository: September 2012

ACMAC’s PrePrint Repository aim is to enable open access to the scholarly output of ACMAC.

http://preprints.acmac.uoc.gr/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ACMAC

https://core.ac.uk/display/10853791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preprints.acmac.uoc.gr/144/
http://preprints.acmac.uoc.gr/


A note on perfect revivals in

finite waveguide arrays

Ioannis D. Chremmos and Nikolaos K. Efremidis

Department of Applied Mathematics, University of Crete

Heraklion 71409, Greece

jochremm@central.ntua.gr

Abstract

We propose a simple and algorithmic method for designing finite

waveguide arrays capable of diffractionless transmission of arbitrary

discrete beams by virtue of perfect revivals. Our approach utilizes an

inverse matrix eignevalue theorem published by Hochstadt in 1974,

which states that the Jacobi matrix, describing the system’s discrete

evolution equations, is uniquely determined by its eigenvalues and the

eigenvalues of its largest leading principal submatrix, as long as the

two sets of eigenvalues interlace. It is further shown that, by arranging

the two sets of eigenvalues symmetrically with respect to zero, the

resulting Jacobi matrix has zero diagonal elements. Therefore, arrays

with arbitrary revival lengths can be obtained by engineering only the

inter-waveguide couplings.

1 Introduction

Over the past fifteen years, a distinct and exciting research domain of in-
tegrated optics has been formed that engages in the study of the so called
discrete diffraction of light [1, 2]. We so refer to the characteristic propaga-
tion and coupling phenomena observed inside periodic arrays of evanescently
coupled optical waveguides, briefly termed waveguide arrays (WGAs). A
primary study of such configurations, conceived as arrays of parallel optical
fibers, was conducted as early as 1965 by Jones [3], without however shedding
much light on their diffraction properties. These were analysed several years
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later and it was further found that discrete diffraction can be counterbalanced
by nonlinearity to create discrete, self-trapped states that propagate without
diffraction along a WGA, thereafter termed discrete solitons [4]. The first
successful experimental observation of these predictions came in the late 90’s
[5], essentially marking the onset of a new field in optics. A few years later,
lattice solitons were also predicted [6] and observed [7] in two-dimensional
configurations. In the years that followed, discrete diffraction in WGAs was
found to enable a diversity of phenomena, in addition to discrete solitons,
that are absent in continuous media. Among them are Bloch-momentum
dependent diffraction [8], optical Bloch oscillations [9] and surface optical
Bloch oscillations [10, 11], Rabi oscillations [12], Zener tunnelling [13] and
dynamic localization [14].

What clearly sets WGAs apart is the ability to manipulate diffraction. In
uniform media, the spatial spread of light beams due to (continuous) diffrac-
tion is unavoidable and can only be delayed by using specially structured
waveforms, such as Bessel [15] or Airy beams [16]. By contrast, a WGA is
a one-dimensional photonic crystal in which discrete diffraction can be ma-
nipulated in a number of ways in order to achieve diffractionless propagation
or transmission of discrete optical beams. Perhaps the most obvious way
for diffractionless propagation through a WGA is to impart to the beam a
transverse (Bloch) momentum corresponding to a phase difference π/2 be-
tween adjacent waveguides. Then the spectrum of the beam lies within the
middle of the first Brillouin zone where second-order diffraction vanishes [8].
The limitation of this method is that the beam must not be too narrow,
otherwise third-order diffraction will inevitably distort it. More elaborate
techniques, inspired by dispersion compensation in optical fibers, have sug-
gested to cascade short WGA sections with alternating signs of diffraction
so that the total average diffraction is zero [17]. This is achieved if the suc-
cessive waveguide segments have opposite inclinations. Another approach is
to employ defect modes, i.e. diffractionless states that are trapped by local
perturbations in the inter-waveguide couplings or the waveguide propagation
constants [18]. However, the profile of defect modes is uniquely determined
by the perturbation parameters, and therefore such modes cannot be used
to transmit arbitrary beams.

In some applications, one may not be interested in cancelling diffraction
all along the path of an optical beam (diffractionless propagation), but only in
receiving the input beam without distortion after it has propagated for some
distance along the WGA (diffractionless transmission). For example, in the
discrete Talbot effect [19], a periodic input beam propagates with periodic
recurrencies, termed perfect revivals, at intervals zT because its constituent
Bloch modes have propagation constants that differ by integer multiples of
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2π/zT . Unfortunately, unlike Talbot effect in continuous media, discrete
diffraction limits the allowed periodicities to only 1, 2, 3, 4 or 6 waveguides,
hence the discrete Talbot effect cannot be used to transmit arbitrary beams.

Of higher interest are Bloch oscillations [9, 20] where the waveguides are
subjected to a linear index gradient, causing light beams to propagate along
sinusoidal paths, which is the analogue of the free electrons’ oscillatory mo-
tion inside a crystal under the influence of a dc electric field. Similar to the
solid-state case, the ”biased” WGA supports Wannier-Stark states whose
eigenvalues are equally separated (Wannier-Stark ladder) by the propaga-
tion constant gradient ∆β. The beating of these states leads to perfect
periodic revivals of the input condition at intervals 2π/∆β. Therefore Bloch
oscillations can be used for diffractionless transmission of arbitrary discrete
beams through a WGA. Attention must be paid to the fact that ideal Bloch
oscillations occur in infinite lattices. In finite WGAs with a linear index gra-
dient, the eigenvalues of the modes that are confined close to the array edges
deviate from the ladder, thus destroying the perfect periodic recurrence of
input beams that excite these modes. Fortunately, as we have recently shown
[10], this problem can be overcome by appropriately engineering the param-
eters (couplings and effective indices) of the WGA close to the edges. Using
these ”matched” terminations, the eigenvalues of the edge modes are restored
back to the ladder thus facilitating perfect (surface) Bloch oscillations. The
method is especially practical since the parameters of only few (less than 10)
waveguides near the edges of the array have to be controlled.

It should be noted that another approach for obtaining Bloch oscillations
in finite WGAs was presented in [21]. In this work, properties of Kac matrices
were utilized to derive an analytic expression for the coupling coefficients of a
finite WGA with constant propagation constants, that results in equidistant
mode eigenvalues and, hence, perfect periodic revivals of any input condition.
This can be a useful approach since it only requires to control the inter-
waveguide couplings, which can be done by adjusting their separations. A
disadvantage is that the ratio of the maximum (center) to the minimum
(edge) coupling coefficient required is equal to (N + 1)/2

√
N (N being the

number of waveguides), which may be difficult to achieve with increasing
N . By contrast, the short array terminations of [10] can be used to restore
Bloch oscillations in finite WGAs of any size larger than twice the size of the
terminations.

In its most general form, the problem of revivals in engineered WGAs
arrays was treated in [22] in a rigorous mathematical context. It was in-
deed shown that, by proper selection of the waveguide propagation constants
and/or couplings, the eigenstates of the system can be made to beat at regu-
lar intervals, repeatedly reconstructing arbitrary input conditions. Analytical
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formulas were given for lattices of up to 5 waveguides, with the algebraic com-
plexity becoming formidable for bigger lattices. In the same work, mirrored
rebirths of the input condition occurring at fractions of the revival length
(termed fractional revivals) were also considered.

In this brief communication, we revisit perfect revivals in finite WGAs,
proposing a simple and algorithmic method for designing the involved param-
eters. In essence, we bring to light a theorem of matrix inverse eigenvalue
theory, published by Hochstadt in 1974 [23], which states that a real, sym-
metric, tridiagonal matrix with positive off-diagonal elements (called Jacobi
matrix), is uniquely determined by its eigenvalues and the eigenvalues of its
largest leading principal submatrix (the matrix obtained by deleting the last
row and column), as long as the two sets of eigenvalues interlace. Among the
several methods that have been proposed for constructing a Jacobi matrix
from its spectral data, we here opt for that proposed by Hald [24], which
involves a straightforward recurrent procedure. But before, let us briefly
formulate the problem under consideration.

2 Method

Under the validity of coupled-mode theory and nearest-neighbour interac-
tions, the evolution of the power-normalized mode amplitudes in a WGA of
N single-mode waveguides is expressed by the evolution equations

(

i
d

dz
+ an

)

ψn + κn−1ψn−1 + κnψn+1 = 0, (1)

where n = 1, 2, ..., N , z is the propagation distance, κn is the field coupling
coefficient between waveguides n and n+1 and an is the propagation constant
detuning of waveguide n from an average value β0. The finiteness of the
lattice requires that the boundary couplings are set to zero, i.e. κ0 = κN = 0.
By arranging the mode amplitudes in a vector Ψ = (ψ1, ψ2, ..., ψN)

T, Eqs. (1)
are compactly written in the matrix form idΨ/dz+AΨ = 0, where A is the
Jacobi matrix with diagonal elements {an} and off-diagonal elements {κn}.
We note that, for standard total-internal-reflection waveguides and fibers,
where the coupling is through the evanescent field, the coupling coefficients
are positive (κn > 0). The evolution of an arbitrary input Ψ(0) is written
Ψ(z) = exp(iAz)Ψ(0). The latter can be computed by noting that real and
symmetric A is diagonalizable by an orthogonal matrix Q, i.e. A = QΛQT ,
from which we get exp(iAz) = Q exp(iΛz)QT, where Λ = diag(λ1, . . . , λN)
is in Jordan form, i.e., is the diagonal matrix of the real eigenvalues with the
corresponding eigenvectors being the columns of Q. Notice also that, since
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A is Hermitian, exp(iAz) is unitary, hence total power Ψ†Ψ is conserved
with z († denotes the Hermitian transpose).

In perfect revivals, the input excitation is repeatedly reproduced, up to
an accumulating phase, at intervals L, denoting the revival length. As shown
in [22], this requires that the eigenvalues of A (which are distinct [22]) are
separated by integer multiples of 2π/L namely

λm = λ0 +Nm

2π

L
, (2)

where m = 1, 2, ..., N , Nm is integer and λ0 is an arbitrary real number.
This happens because an arbitrary input condition can be decomposed into
the set of eigenvectors of matrix A, which form a complete and orthogonal
set. Every eigenvector propagates along the WGA with its own propagation
constant which is an eigenvalue of A. Due to the condition of Eq. (2), the
eigenmodes interfere in phase at intervals L, thus recontructing the input
condition times a common phase factor. Our problem is therefore equivalent
to constructing a Jacobi matrix A, whose eigenvalues satisfy Eq. (2). After
Hochstadt’s theorem [23], we know that this is always possible, provided that
the N − 1 eigenvalues {µn} of the largest leading principal submatrix of A
(hereafter called A′) are chosen so as to interlace {λn}. Obviously, this can
be done in an infinite number of ways, implying infinite possible realizations
of A. Also note that λ0 can be absorbed by β0, by replacing A by A− λ0I,
which is equivalent to a common detuning in the propagation constants of
all waveguides. In addition, the revival length can be scaled out and set to
2π by multiplying A by L/2π.

In Hald’s algorithm [24], one starts by defining the eigenvalues {λn} and
{µn} of matrices A and A′, respectively. Then the characteristic polynomi-
als of these matrices, pN(λ) and pN−1(λ), follow immediately by the factor
theorem

pN (λ) =

N
∏

n=1

(λn − λ), pN−1 (λ) =

N−1
∏

n=1

(µn − λ) (3)

Subsequently, the recurrence relation between the characteristic polynomials
of the leading principal submatrices

pn(λ) = (an − λ)pn−1(λ)− κ2
n−1pn−2(λ) (4)

is applied for n = N,N − 1, ..., 1 with p0 ≡ 1, p−1 ≡ 0. At each step,
the parameters an, κn−1 are determined so that the polynomial pn−2(λ) is of
degree n − 2 with leading coefficient (−1)n−2. At the last step (n = 1), a1
is determined from the relation p1(λ) = a1 − λ. In the end of the procedure,
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all the parameters of the WGA, namely the N propagation constants {an}
and the N − 1 coupling coefficients {κn}, have been determined.

3 Examples

We here present some examples of designing WGAs capable of perfect revivals
using the outlined method. For example, consider a lattice of N = 7 waveg-
uides and assume that the eigenvalues of A have the minimum spacing re-
quired for a normalized revival length L = 2π, i.e. {λn} = {−3,−2,−1, 0, 1, 2,
3}. Subsequently, the eigenvalues of A′ are chosen randomly so as to inter-
lace {λn}, say {µn} = {−2.9,−1.5,−0.2, 0.9, 1.3, 2.2}. The detunings and
couplings resulting from Hald’s algorithm are given in the caption of Fig. 1.
Parts (a) and (b) of that figure show the simulated evolution of the field am-
plitude under excitation of a single waveguide at the boundary of the WGA.
Perfect revivals with period 2π are clearly verified. Notice that the parame-
ters of the array do not exhibit any symmetry, hence the field patterns are
quite different, when the first or the last waveguide is excited. In (a) the pe-
riodic breathing of optical power is slower because the coupling coefficients
at the left side of the array are lower.

The realization of a WGA with varying an may be difficult because
the propagation constant of each waveguide must be independently tuned.
Therefore designs involving waveguides with a common effective index (an =
0) would be preferable. This can be achieved if the eigenvalues of A and
A′ are arranged symmetrically with respect to zero. In other words, if λn is
an eigenvalue of A then −λn is also an eigenvalue and similarly for matrix
A′. The proof of an = 0 for all n can be made by induction. Indeed, in this
case, the characteristic polynomial pN(λ) contains only terms λN , λN−2, ...
and, similarly, pN−1(λ) contains only terms λN−1, λN−3, ..., as can be shown
from Eqs. (3). Subsequently, from the recurrence relation of Eq. (4), it
follows that aN = 0 and that the polynomial pN−2(λ) contains only terms
λN−2, λN−4, .... By applying Eq. (4) recurrently for n = N−1, ..., 1, all an are
shown to vanish. For example, assume {λn} = {−3,−2,−1, 0, 1, 2, 3} and
{µn} = {−2.5,−1.5,−0.5, 0.5, 1.5, 2.5}. After applying Hald’s algorithm, the
resulting detunings are zero while the couplings are given in the caption of
Fig. 2. The simulated field evolution for single boundary waveguide excita-
tion, shown in the same Figure, verify the perfect revivals. Such an array is
easier to implement by using identical waveguides and adjusting their mutual
separations.

In Fig. 3 an example with a larger array N = 21 is considered. The
assumed eigenvalues are λn = n − (N + 1)/2, n = 1, 2, ..., N , for matrix A
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Figure 1: Perfect revivals under excitation of a single bound-
ary waveguide in a WGA with 7 elements. The array parame-
ters are {an} = {0.76,−0.2,−0.33,−0.17,−1.01, 0.75, 0.2} and {κn} =
{0.56, 1.06, 1.71, 1.43, 1.21, 2.23}.

and µn = λ + 0.5, n = 1, 2, ..., N − 1, for matrix A′. The resulting coupling
coefficients are shown in Fig. 3(c), while an = 0. Figures 3(a) and (b) show
the simulated field amplitude evolution in the case of excitation of the middle
waveguide and for a discrete beam with a Gaussian envelope, respectively.
Perfect revivals with period 2π are verified. Note in (b) that the evolution
pattern resembles Bloch oscillations, which are here the result of a varying
coupling coefficient across the lattice rather than of a varying propagation
constant as in classic Bloch oscillations.

4 Conclusion

We have presented a simple systematic method for designing WGAs capable
of perfect revivals with a desired revival length. The key is Hochstadt’s in-
verse eigenvalue theorem for Jacobi matrices and the associated construction
algorithm by Hald. Of special interest is the case in which the Jacobi ma-
trix, describing the system’s discrete evolution equations, has zero diagonal
elements, because the corresponding WGA can be conveniently fabricated
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Figure 2: Perfect revivals under excitation of a single boundary waveg-
uide in a WGA with 7 elements. All waveguides have the same prop-
agation constant (an = 0) while the coupling coefficients are {κn} =
{0.87, 1.17, 1.37, 1.50, 1.58, 2.29}.

by controlling only the inter-waveguide separations. Our work comes to con-
tribute to the few other methods so far reported for obtaining perfect revivals
in discrete optical lattices, namely Bloch oscillations [9] and surface Bloch
oscillations [10], direct analytical calculations [22] and closed form solutions
[21]. The phenomenon of periodic field revivals offers an indirect path for
”beating” diffraction in WGAs (which are inherently diffractive light guiding
devices) and retrieving arbitrary discrete optical beams without distortion
after propagating over a desired length.
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