2,649 research outputs found

    Simplicity of the automorphism groups of some Hrushovski constructions

    Get PDF
    We show that the automorphism groups of certain countable structures obtained using the Hrushovski amalgamation method are simple groups. The structures we consider are the 'uncollapsed' structures of infinite Morley rank obtained by the ab initio construction and the (unstable) omega-categorical pseudoplanes. The simplicity of the automorphism groups of these follows from results which generalize work of Lascar and of Tent and Ziegler.Comment: 35 page

    Vertex decomposable graphs, codismantlability, Cohen-Macaulayness and Castelnuovo-Mumford regularity

    Get PDF
    We call a (simple) graph G codismantlable if either it has no edges or else it has a codominated vertex x, meaning that the closed neighborhood of x contains that of one of its neighbor, such that G-x codismantlable. We prove that if G is well-covered and it lacks induced cycles of length four, five and seven, than the vertex decomposability, codismantlability and Cohen-Macaulayness for G are all equivalent. The rest deals with the computation of Castelnuovo-Mumford regularity of codismantlable graphs. Note that our approach complements and unifies many of the earlier results on bipartite, chordal and very well-covered graphs

    Equistarable graphs and counterexamples to three conjectures on equistable graphs

    Full text link
    Equistable graphs are graphs admitting positive weights on vertices such that a subset of vertices is a maximal stable set if and only if it is of total weight 11. In 19941994, Mahadev et al.~introduced a subclass of equistable graphs, called strongly equistable graphs, as graphs such that for every c1c \le 1 and every non-empty subset TT of vertices that is not a maximal stable set, there exist positive vertex weights such that every maximal stable set is of total weight 11 and the total weight of TT does not equal cc. Mahadev et al. conjectured that every equistable graph is strongly equistable. General partition graphs are the intersection graphs of set systems over a finite ground set UU such that every maximal stable set of the graph corresponds to a partition of UU. In 20092009, Orlin proved that every general partition graph is equistable, and conjectured that the converse holds as well. Orlin's conjecture, if true, would imply the conjecture due to Mahadev, Peled, and Sun. An intermediate conjecture, one that would follow from Orlin's conjecture and would imply the conjecture by Mahadev, Peled, and Sun, was posed by Miklavi\v{c} and Milani\v{c} in 20112011, and states that every equistable graph has a clique intersecting all maximal stable sets. The above conjectures have been verified for several graph classes. We introduce the notion of equistarable graphs and based on it construct counterexamples to all three conjectures within the class of complements of line graphs of triangle-free graphs
    corecore