research

Equistarable graphs and counterexamples to three conjectures on equistable graphs

Abstract

Equistable graphs are graphs admitting positive weights on vertices such that a subset of vertices is a maximal stable set if and only if it is of total weight 11. In 19941994, Mahadev et al.~introduced a subclass of equistable graphs, called strongly equistable graphs, as graphs such that for every c1c \le 1 and every non-empty subset TT of vertices that is not a maximal stable set, there exist positive vertex weights such that every maximal stable set is of total weight 11 and the total weight of TT does not equal cc. Mahadev et al. conjectured that every equistable graph is strongly equistable. General partition graphs are the intersection graphs of set systems over a finite ground set UU such that every maximal stable set of the graph corresponds to a partition of UU. In 20092009, Orlin proved that every general partition graph is equistable, and conjectured that the converse holds as well. Orlin's conjecture, if true, would imply the conjecture due to Mahadev, Peled, and Sun. An intermediate conjecture, one that would follow from Orlin's conjecture and would imply the conjecture by Mahadev, Peled, and Sun, was posed by Miklavi\v{c} and Milani\v{c} in 20112011, and states that every equistable graph has a clique intersecting all maximal stable sets. The above conjectures have been verified for several graph classes. We introduce the notion of equistarable graphs and based on it construct counterexamples to all three conjectures within the class of complements of line graphs of triangle-free graphs

    Similar works

    Full text

    thumbnail-image

    Available Versions