281,421 research outputs found

    Towards Accountable AI: Hybrid Human-Machine Analyses for Characterizing System Failure

    Full text link
    As machine learning systems move from computer-science laboratories into the open world, their accountability becomes a high priority problem. Accountability requires deep understanding of system behavior and its failures. Current evaluation methods such as single-score error metrics and confusion matrices provide aggregate views of system performance that hide important shortcomings. Understanding details about failures is important for identifying pathways for refinement, communicating the reliability of systems in different settings, and for specifying appropriate human oversight and engagement. Characterization of failures and shortcomings is particularly complex for systems composed of multiple machine learned components. For such systems, existing evaluation methods have limited expressiveness in describing and explaining the relationship among input content, the internal states of system components, and final output quality. We present Pandora, a set of hybrid human-machine methods and tools for describing and explaining system failures. Pandora leverages both human and system-generated observations to summarize conditions of system malfunction with respect to the input content and system architecture. We share results of a case study with a machine learning pipeline for image captioning that show how detailed performance views can be beneficial for analysis and debugging

    Modelling human control behaviour with a Markov-chain switched bank of control laws

    Get PDF
    A probabilistic model of human control behaviour is described. It assumes that human behaviour can be represented by switching among a number of relatively simple behaviours. The model structure is closely related to the Hidden Markov Models (HMMs) commonly used for speech recognition. An HMM with context-dependent transition functions switching between linear control laws is identified from experimental data. The applicability of the approach is demonstrated in a pitch control task for a simplified helicopter model

    TransBooster: boosting the performance of wide-coverage machine translation systems

    Get PDF
    We propose the design, implementation and evaluation of a novel and modular approach to boost the translation performance of existing, wide-coverage, freely available machine translation systems based on reliable and fast automatic decomposition of the translation input and corresponding composition of translation output. We provide details of our method, and experimental results compared to the MT systems SYSTRAN and Logomedia. While many avenues for further experimentation remain, to date we fall just behind the baseline systems on the full 800-sentence testset, but in certain cases our method causes the translation quality obtained via the MT systems to improve
    • 

    corecore