411 research outputs found

    A note on 3-choosability of planar graphs without certain cycles

    Get PDF
    AbstractSteinberg asked whether every planar graph without 4 and 5 cycles is 3-colorable. Borodin, and independently Sanders and Zhao, showed that every planar graph without any cycle of length between 4 and 9 is 3-colorable. We improve this result by showing that every planar graph without any cycle of length 4, 5, 6, or 9 is 3-choosable

    Disproof of the List Hadwiger Conjecture

    Full text link
    The List Hadwiger Conjecture asserts that every KtK_t-minor-free graph is tt-choosable. We disprove this conjecture by constructing a K3t+2K_{3t+2}-minor-free graph that is not 4t4t-choosable for every integer t≥1t\geq 1

    On edge-group choosability of graphs

    Full text link
    In this paper, we study the concept of edge-group choosability of graphs. We say that G is edge k-group choosable if its line graph is k-group choosable. An edge-group choosability version of Vizing conjecture is given. The evidence of our claim are graphs with maximum degree less than 4, planar graphs with maximum degree at least 11, planar graphs without small cycles, outerplanar graphs and near-outerplanar graphs
    • …
    corecore