DISCRETE
MATHEMATICS

Note

A note on 3-choosability of planar graphs without certain cycles

Li Zhang ${ }^{\text {a }}$, Baoyindureng Wu ${ }^{\text {a, b }}$
${ }^{a}$ Institute of Systems Science, Academy of Mathematics and Systems Sciences Chinese Academy of Sciences, Beijing 100080, PR China
${ }^{\mathrm{b}}$ College of Mathematics and System Sciences, Xinjiang University Urumqi, Xinjiang 830046, PR China

Received 17 March 2004; received in revised form 4 March 2005; accepted 5 May 2005
Available online 22 June 2005

Abstract

Steinberg asked whether every planar graph without 4 and 5 cycles is 3 -colorable. Borodin, and independently Sanders and Zhao, showed that every planar graph without any cycle of length between 4 and 9 is 3 -colorable. We improve this result by showing that every planar graph without any cycle of length $4,5,6$, or 9 is 3 -choosable. © 2005 Elsevier B.V. All rights reserved.

Keywords: Planar graph; Cycle; Choosability

1. Introduction

All graphs considered here are finite, undirected and simple. Let $G=(V(G), E(G))$ be a graph. For a vertex $v, d_{G}(v)$ and $N_{G}(v)$ (also $d(v)$ and $N(v)$ for short) denote its degree and the set of its neighbors in G, respectively. $\delta(G)$ denotes the minimum degree of G. If $S \subset V(G)$, then $G-S$ is the subgraph obtained from G by deleting the vertices in S and all the edges incident with some vertices in S, and $G[S]$ is the subgraph of G induced by the subset S. A k-coloring of G is a mapping φ from $V(G)$ to a k-element set such that $\varphi(x) \neq \varphi(y)$ for any adjacent vertices x and y. The graph is k-colorable if it has a k-coloring.

[^0]A list-assignment L to the vertices of G is the assignment of a set $L(v)$ of colors to every vertex v of G. If G has a proper coloring φ such that $\varphi(v) \in L(v)$ for all vertices v, then we say that G is L-colorable or φ is an L-coloring of G. We say that G is k-list colorable or k-choosable if it is L-colorable for every list-assignment L satisfying $|L(v)|=k$ for all vertices v.

Let G be a plane graph. $F(G)$ denotes the set of faces of G. For a face $f \in F(G), \lambda(f)$ denotes the number of edges on the boundary of f, where each cut edge is counted twice. A face f is called simple if its boundary is a cycle. Let us denote the set of vertices on the boundary of f by $V(f)$. If a vertex v satisfies $v \in V(f)$, then we say that v and f are incident; two faces f_{1} and f_{2} are adjacent if they have some common edges. We often call a vertex $v \in V(G)$ a k-vertex if $d(v)=k$, and similarly call a face $f \in F(G)$ a k-face if $\lambda(f)=k$.

Various results are known on the 3-colorability and 3-choosability of classes of planar graphs. Alon and Tarsi [2] proved that every planar bipartite graph is 3-choosable. Thomassen [9] modified the classical theorem of Grötzsch [6] saying that every planar graph without 3 cycles is 3 -colorable by showing that every planar graph without 3 and 4 cycles is 3 -choosable. In the mid-1970s, Steinberg (see [8]) asked whether every planar graph without 4 and 5 cycles is 3 -colorable. Essentially no progress was made on this question for fifteen years, leading Erdös, in 1990, to suggest the following relaxation by asking if there is an integer $k \geqslant 5$ such that if G is a planar graph without any cycles of length between 4 and k, then is $G 3$-colorable? Abbott and Zhou [1] proved that Erdös' relaxation holds for $k=11$ and later Borodin [4] established it when $k=10$. The best-known result for $k=9$ is due to Borodin [3] and independently to Sanders and Zhao [7]. Borondin's proof is based on the following structural property of planar graphs.

Theorem 1.1 (Borodin [3]). Let G be a plane graph without any cycles of length between 4 and 9 . If $\delta(G) \geqslant 3$, then G contains a 10 -face incident with ten 3 -vertices and adjacent to five 3 -faces.

In fact, note that one can obtain the following stronger result from Theorem 1.1.
Corollary 1.2. Every planar graph without i-cycles for each $i \in\{4, \ldots, 9\}$ is 3 - choosable.

Proof. Suppose the plane graph G is a counterexample of minimum order; then $\delta(G) \geqslant 3$. Since G has no i-cycles for all $i=4,5,6,7,8,9$, then by Theorem 1.1, G has a 10 -face f incident with ten 3 -vertices. Setting $G^{\prime}=G-V(f)$, let L be a list-assignment of G in which $|L(v)|=3$ for each vertex $v \in V(G)$. By the minimality of G, G^{\prime} admits a list coloring φ^{\prime} with list L restricted to G^{\prime}. For $v \in V(f)$, let $L^{\prime}(v)=L(v) \backslash\left\{\varphi^{\prime}(u) \mid u \in V(G) \cap N(u)\right\}$, then $\left|L^{\prime}(v)\right| \geqslant 2$. Since $G[V(f)]$ is isomorphic to C_{10}, the cycle of length 10 , and by the well-known fact that every even cycle is 2 -choosable, $G[V(f)]$ admits a list coloring with L^{\prime}. Thus, we obtain a list coloring of G, a contradiction.

In this note, we will show that the lack of cycles C_{4}, C_{5}, C_{6} and C_{9} is sufficient for a plane graph having the same sub-structure as confirmed in Theorem 1.1.

Theorem 1.3. Let G be a plane graph without any cycles of length in $\{4,5,6,9\}$. If $\delta(G) \geqslant 3$, then G contains a 10-face incident with ten 3-vertices and adjacent to five 3-faces.

By the similar proof as in Theorem 1.2, we have the following result.
Corollary 1.4. Let G be a plane graph without any cycles of length in $\{4,5,6,9\}$. Then G is 3-choosable.

2. Proof of Theorem 1.3

Suppose that G is a counterexample of minimum order. Then, G is connected and $\delta(G) \geqslant 3$. We define a weight function w on $V(G) \cup F(G)$ by letting $w(v)=d(v)-6$ for $v \in V(G)$ and $w(f)=2 \lambda(f)-6$ for $f \in F(G)$. Applying Euler's formula $|V(G)|-$ $|E(G)|+|F(G)|=2$ and the handshaking lemmas for vertices and faces for a plane graph, we have $\sum_{x \in V(G) \cup F(G)} w(x)=\sum_{v \in V(G)}(d(v)-6)+\sum_{f \in F(G)}(2 \lambda(f)-6)=-12$.

First, we assume that G is 2 -connected, which implies that every face of G is simple. We shall discharge the weight of every non-triangular face f to its incident vertices v with $d(v) \leqslant 5$. Let $z(f, v)$ be the amount of weight that is transferred from f to v according to the following rules.

R1. $d(v)=3: z(f, v)=\frac{3}{2}$ if v is incident with a triangle; otherwise, $z(f, v)=1$.
R2. $d(v)=4: z(f, v)=1$ if v is incident with either two triangles or one triangle not adjacent to f; otherwise, $z(f, v)=\frac{1}{2}$.
R3. $d(v)=5: z(f, v)=\frac{1}{3}$.
Let $w^{\prime}(x)$ be the new weight of $x \in V(G) \cup E(G)$ after the discharging process is finished. Since we discharge weight from one element to another, the total weight is kept fixed during the discharging. Thus, $\sum_{x \in V(G) \cup F(G)} w^{\prime}(x)=-12$. On the other hand, we shall obtain a contradiction by verifying $w^{\prime}(x) \geqslant 0$ for every $x \in V(G) \cup F(G)$. Note that $w^{\prime}(v)=w(v)=d(v)-6 \geqslant 0$ if $d(v) \geqslant 6$ and $w^{\prime}(f)=w(f)=0$ for a 3-face f. Thus, it remains to verify that the new weights are also nonnegative for the vertices $v \in V(G)$ with $d(v) \leqslant 5$ and for the faces f with $\lambda(f) \notin\{3,4,5,6,9\}$.

Let $T(v)$ be the set of 3-faces incident with a vertex v. Since G contains no C_{4}, G has no two adjacent 3-faces, and thus $|T(v)| \leqslant d(v) / 2$. If $d(v)=3$, then we have $w(v)=-3$ and $|T(v)| \leqslant 1$. Hence, by R1 $w^{\prime}(v) \geqslant w(v)+\frac{3}{2} \times 2=0$ if $|T(v)|=1$; otherwise, $w^{\prime}(v) \geqslant w(v)+$ $1 \times 3=0$. If $d(v)=4$, then $w(v)=-2$ and $|T(v)| \leqslant 2$. By R2, $w^{\prime}(v) \geqslant w(v)+1 \times 2=0$ if $|T(v)|=2 ; w^{\prime}(v) \geqslant w(v)+\frac{1}{2} \times 2+1 \geqslant 0$ if $|T(v)|=1$, and $w^{\prime}(v) \geqslant w(v)+\frac{1}{2} \times 4=0$ if $|T(v)|=0$. If $d(v)=5$, then $w(v)=-1$ and $|T(v)| \leqslant 2$. Hence, by R3, $w^{\prime}(v) \geqslant w(v)+\frac{1}{3} \times 3=0$.

Now let f be a face with $\lambda(f) \notin\{3,4,5,6,9\}$. Let a, b, and c be, respectively, the number of 3,4 and 5 vertices incident with f. Clearly, $a+b+c \leqslant \lambda(f)$. If $\lambda(f) \geqslant 12$, then $w^{\prime}(f) \geqslant w(f)-\frac{3}{2} a-b-\frac{1}{3} c \geqslant 2 \lambda-6-\frac{3}{2} a-b-c \geqslant 2 \lambda-6-\frac{3}{2} a-(\lambda-a)=\lambda-6-$ $\frac{1}{2} a \geqslant(\lambda / 2)-6 \geqslant 0$. If $\lambda(f)=8, f$ cannot be adjacent to a 3-face since G has no $C 9$. Hence $z(f, v) \leqslant 1$ for any $v \in V(f)$ by the discharging rule, and thus $w^{\prime}(f) \geqslant 2 \times 8-6-8>0$. For the same reason, if $\lambda(f)=7$, f is adjacent to atmost one 3 -face. It follows that f is incident with atmost two vertices receiving $\frac{3}{2}$ each, so that $w^{\prime}(f) \geqslant w(f)-\left(\frac{3}{2} \times 2+5 \times 1\right)=0$. If $\lambda(f)=11$, there are atmost 10 vertices of $V(f)$ that receive $\frac{3}{2}$ from f. So $w^{\prime}(f) \geqslant w(f)-\left(\frac{3}{2} \times 10+1\right)=0$.

Finally, let $\lambda(f)=10$. By assumption, f cannot be incident with ten vertices receiving $\frac{3}{2}$ each. If f is incident with 9 vertices receiving $\frac{3}{2}$ each, then theremaining vertex can receive atmost $\frac{1}{2}$ from f. Thus, $w^{\prime}(f) \geqslant w(f)-\left(\frac{3}{2} \times 9+\frac{1}{2}\right)=0$. Otherwise, there are atmost 8 vertices in $V(f)$ that receive $\frac{3}{2}$ from f, so that $w^{\prime}(f) \geqslant w(f)-\left(\frac{3}{2} \times 8+1 \times 2\right)=0$.

This gives a contradiction, and proves our theorem for 2-connected graphs. Suppose now that G is not 2-connected, and let B be a block containing a unique cut vertex v_{0} of G. Thus, $d_{B}\left(v_{0}\right) \geqslant 2$ and $d_{B}(v) \geqslant 3$ for every $v \in V(B) \backslash\left\{v_{0}\right\}$. We define the weight function w on $V(B) \cup F(B)$ by $w(v)=d_{B}(v)-6$ for $v \in V(B)$ and $w(f)=2 \lambda_{B}(f)-6$ for $f \in F(B)$. Since $w\left(v_{0}\right)=d_{B}\left(v_{0}\right)-6 \geqslant-4$, we have $\sum\left\{w(x) \mid x \in(V(B) \cup F(B)) \backslash\left\{v_{0}\right\}\right\}=-12-$ $w\left(v_{0}\right) \leqslant-8$. Let w^{\prime} denote the new weight after discharging the weights by the same rules as in the preceding proof, except that v_{0} receives nothing from its incident faces. We have $\sum\left\{w^{\prime}(x) \mid x \in(V(B) \cup F(B)) \backslash\left\{v_{0}\right\}\right\} \leqslant-8$ since the total weight is kept fixed as we have seen before. However, by the similar argument as for the 2-connected case, we obtain $w^{\prime}(x) \geqslant 0$ for all $x \in(V(B) \cup F(B)) \backslash\left\{v_{0}\right\}$. It follows that $\sum\left\{w^{\prime}(x) \mid x \in(V(B) \cup F(B)) \backslash\left\{v_{0}\right\}\right\} \geqslant 0$, a contradiction. This completes the proof of Theorem 1.3.

Remark. Borodin et al. [5] currently move a further step closer to solving Steinberg's problem by showing that a planar graph G is 3-colorable if G contains no cycles of length in $\{4,5,6,7\}$. In [10], we also proved that a planar graph G is 3-choosable if G contains no cycles of length in $\{4,5,7,9\}$.

Acknowledgements

We would like to express our gratitude to the referees for their careful reading and helpful comments.

References

[1] H.L. Abbott, B. Zhou, On small faces in 4-critical planar graphs, Ars Combin. 32 (1991) 203-207.
[2] N. Alon, M. Tarsi, Coloring and orientations of graphs, Combinatorica 12 (2) (1992) 125-134.
[3] O.V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory 12 (2) (1996) 183-186.
[4] O.V. Borodin, To the paper of H.L. Abbott and B. Zhou on 4-critical planar graphs, Ars Combin. 43 (1996) 191-192.
[5] O.V. Borodin, A.N. Glebov, A. Raspaud, M.R. Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, Working paper, undated, submitted for publication.
[6] H. Grötzsch, Ein Dreifarbensatz fur dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Mat-Natur. Reche. 8 (1959) 109-120.
[7] D.P. Sanders, Y. Zhao, A note on the three color problem, Graphs Combin. 11 (1995) 91-94.
[8] R. Steinberg, The state of the three color problem, in: J. Gimbel, J.W. Kennedy, L.V. Quintas (Eds.), Quo Vadis, Graph Theory, Annals of Discrete Mathematics, vol. 55, 1993, pp. 211-248.
[9] C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (1995) 101-107.
[10] L. Zhang, B. Wu, Three-choosable planar graphs without certain small cycles, Graph Theory Notes of New York 46 (2004) 27-30.

[^0]: E-mail addresses: zhangli@amss.ac.cn (L. Zhang), baoyin@amss.ac.cn (B. Wu).

 0012-365X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2005.05.001

