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Abstract

Steinberg asked whether every planar graph without 4 and 5 cycles is 3-colorable. Borodin, and
independently Sanders and Zhao, showed that every planar graph without any cycle of length between
4 and 9 is 3-colorable. We improve this result by showing that every planar graph without any cycle
of length 4, 5, 6, or 9 is 3-choosable.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered here are finite, undirected and simple. LetG = (V (G), E(G)) be
a graph. For a vertexv, dG(v) andNG(v) (alsod(v) andN(v) for short) denote its degree
and the set of its neighbors inG, respectively.�(G) denotes the minimum degree ofG.
If S ⊂ V (G), thenG − S is the subgraph obtained fromG by deleting the vertices inS
and all the edges incident with some vertices inS, andG[S] is the subgraph ofG induced
by the subsetS. A k-coloring of G is a mapping� from V (G) to a k-element set such
that�(x) �= �(y) for any adjacent verticesx andy. The graph isk-colorable if it has a
k-coloring.

E-mail addresses:zhangli@amss.ac.cn(L. Zhang),baoyin@amss.ac.cn(B. Wu).

0012-365X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2005.05.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82378282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disc
mailto:zhangli@amss.ac.cn
mailto:baoyin@amss.ac.cn


L. Zhang, B. Wu / Discrete Mathematics 297 (2005) 206–209 207

A list-assignment Lto the vertices ofG is the assignment of a setL(v) of colors to every
vertexv of G. If G has a proper coloring� such that�(v) ∈ L(v) for all verticesv, then
we say thatG is L-colorableor � is anL-coloring of G. We say thatG is k-list colorable
or k-choosableif it is L-colorable for every list-assignmentL satisfying|L(v)| = k for all
verticesv.

LetG be a plane graph.F(G) denotes the set of faces ofG. For a facef ∈ F(G), �(f )

denotes the number of edges on the boundary off, where each cut edge is counted twice.
A face f is calledsimpleif its boundary is a cycle. Let us denote the set of vertices on the
boundary off byV (f ). If a vertexv satisfiesv ∈ V (f ), then we say thatv andf areincident;
two facesf1 andf2 areadjacentif they have some common edges. We often call a vertex
v ∈ V (G) ak-vertexif d(v) = k, and similarly call a facef ∈ F(G) ak-faceif �(f ) = k.

Various results are known on the 3-colorability and 3-choosability of classes of pla-
nar graphs. Alon and Tarsi[2] proved that every planar bipartite graph is 3-choosable.
Thomassen[9] modified the classical theorem of Grötzsch[6] saying that every planar
graph without 3 cycles is 3-colorable by showing that every planar graph without 3 and
4 cycles is 3-choosable. In the mid-1970s, Steinberg (see[8]) asked whether every planar
graph without 4 and 5 cycles is 3-colorable. Essentially no progress was made on this ques-
tion for fifteen years, leading Erdös, in 1990, to suggest the following relaxation by asking
if there is an integerk�5 such that ifG is a planar graph without any cycles of length
between 4 andk, then isG 3-colorable? Abbott and Zhou[1] proved that Erdös’ relaxation
holds fork =11 and later Borodin[4] established it whenk =10. The best-known result for
k = 9 is due to Borodin[3] and independently to Sanders and Zhao[7]. Borondin’s proof
is based on the following structural property of planar graphs.

Theorem 1.1(Borodin[3] ). Let G be a plane graph without any cycles of length between
4 and9. If �(G)�3, then G contains a10-face incident with ten3-vertices and adjacent to
five3-faces.

In fact, note that one can obtain the following stronger result from Theorem 1.1.

Corollary 1.2. Every planar graphwithout i-cycles for eachi ∈ {4, . . . ,9} is3-choosable.

Proof. Suppose the plane graphG is a counterexample of minimum order; then�(G)�3.
SinceG has noi-cycles for alli = 4, 5, 6, 7, 8, 9, then by Theorem 1.1,G has a 10-facef
incident with ten 3-vertices. SettingG′ =G−V (f ), letL be a list-assignment ofG in which
|L(v)| = 3 for each vertexv ∈ V (G). By the minimality ofG, G′ admits a list coloring�′
with list L restricted toG′. For v ∈ V (f ), let L′(v) = L(v)\{�′(u)|u ∈ V (G) ∩ N(u)},
then|L′(v)|�2. SinceG[V (f )] is isomorphic toC10, the cycle of length 10, and by the
well-known fact that every even cycle is 2-choosable,G[V (f )] admits a list coloring with
L′. Thus, we obtain a list coloring ofG, a contradiction. �

In this note, we will show that the lack of cyclesC4, C5, C6 andC9 is sufficient for a
plane graph having the same sub-structure as confirmed in Theorem 1.1.

Theorem 1.3. LetGbeaplanegraphwithoutanycyclesof length in{4, 5, 6, 9}. If �(G)�3,
then G contains a10-face incident with ten3-vertices and adjacent to five3-faces.
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By the similar proof as in Theorem 1.2, we have the following result.

Corollary 1.4. Let G be a plane graph without any cycles of length in{4, 5, 6, 9}. Then G
is 3-choosable.

2. Proof of Theorem 1.3

Suppose thatG is a counterexample of minimum order. Then,G is connected and
�(G)�3. We define a weight functionw on V (G) ∪ F(G) by lettingw(v) = d(v) − 6
for v ∈ V (G) andw(f ) = 2�(f ) − 6 for f ∈ F(G). Applying Euler’s formula|V (G)| −
|E(G)|+ |F(G)|=2 and the handshaking lemmas for vertices and faces for a plane graph,
we have

∑
x∈V (G)∪F(G)w(x) = ∑

v∈V (G)(d(v) − 6) + ∑
f ∈F(G)(2�(f ) − 6) = −12.

First, we assume thatG is 2-connected, which implies that every face ofG is simple.
We shall discharge the weight of every non-triangular facef to its incident verticesv with
d(v)�5. Let z(f, v) be the amount of weight that is transferred fromf to v according to
the following rules.

R1. d(v) = 3:z(f, v) = 3
2 if v is incident with a triangle; otherwise, z(f, v) = 1.

R2. d(v) = 4:z(f, v) = 1 if v is incident with either two triangles or one triangle not
adjacent to f; otherwise, z(f, v) = 1

2.
R3. d(v) = 5:z(f, v) = 1

3.

Let w′(x) be the new weight ofx ∈ V (G) ∪ E(G) after the discharging process is
finished. Since we discharge weight from one element to another, the total weight is kept
fixed during the discharging. Thus,

∑
x∈V (G)∪F(G)w

′(x) = −12. On the other hand, we
shall obtain a contradiction by verifyingw′(x)�0 for everyx ∈ V (G) ∪ F(G). Note that
w′(v) = w(v) = d(v) − 6�0 if d(v)�6 andw′(f ) = w(f ) = 0 for a 3-facef. Thus, it
remains to verify that the new weights are also nonnegative for the verticesv ∈ V (G) with
d(v)�5 and for the facesf with �(f ) /∈ {3, 4, 5, 6, 9}.

Let T (v) be the set of 3-faces incident with a vertexv. SinceG contains noC4,G has no
two adjacent 3-faces, and thus|T (v)|�d(v)/2. If d(v) = 3, then we havew(v) = −3 and
|T (v)|�1. Hence, by R1w′(v)�w(v)+ 3

2 ×2=0 if |T (v)|=1; otherwise,w′(v)�w(v)+
1× 3= 0. If d(v) = 4, thenw(v) = −2 and|T (v)|�2. By R2,w′(v)�w(v) + 1× 2= 0 if
|T (v)| = 2; w′(v)�w(v) + 1

2 × 2 + 1�0 if |T (v)| = 1, andw′(v)�w(v) + 1
2 × 4= 0 if

|T (v)|=0. If d(v)=5, thenw(v)=−1and|T (v)|�2.Hence,byR3,w′(v)�w(v)+1
3×3=0.

Now let f be a face with�(f ) /∈ {3, 4, 5, 6, 9}. Let a, b, andc be, respectively, the num-
ber of 3, 4 and 5 vertices incident withf. Clearly,a + b + c��(f ). If �(f )�12, then
w′(f )�w(f ) − 3

2a − b − 1
3c�2� − 6− 3

2a − b − c�2� − 6− 3
2a − (� − a) = � − 6−

1
2a�(�/2) − 6�0. If �(f ) = 8, f cannot be adjacent to a 3-face sinceG has noC9. Hence
z(f, v)�1 for anyv ∈ V (f ) by the discharging rule, and thusw′(f )�2×8−6−8> 0. For
the same reason, if�(f )=7,f is adjacent to atmost one3-face. It follows thatf is incidentwith
atmost two vertices receiving32 each, so thatw′(f )�w(f )−(3

2×2+5×1)=0. If �(f )=11,
thereareatmost 10verticesofV (f ) that receive32 from f. Sow′(f )�w(f )−(3

2×10+1)=0.
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Finally, let �(f ) = 10. By assumption,f cannot be incident with ten vertices receiving3
2

each. Iff is incident with 9 vertices receiving32 each, then theremaining vertex can receive
atmost12 from f. Thus,w′(f )�w(f ) − (3

2 × 9 + 1
2) = 0. Otherwise, there are atmost 8

vertices inV (f ) that receive3
2 from f, so thatw′(f )�w(f ) − (3

2 × 8+ 1× 2) = 0.
This gives a contradiction, and proves our theorem for 2-connected graphs. Suppose now

thatG is not 2-connected, and letBbe a block containing a unique cut vertexv0 of G. Thus,
dB(v0)�2 anddB(v)�3 for everyv ∈ V (B)\{v0}. We define the weight functionw on
V (B) ∪ F(B) by w(v) = dB(v) − 6 for v ∈ V (B) andw(f ) = 2�B(f ) − 6 for f ∈ F(B).
Sincew(v0) = dB(v0) − 6� − 4, we have

∑{w(x)|x ∈ (V (B) ∪ F(B))\{v0}} = −12−
w(v0)� −8. Letw′ denote the new weight after discharging the weights by the same rules
as in the preceding proof, except thatv0 receives nothing from its incident faces. We have∑{w′(x)|x ∈ (V (B)∪F(B))\{v0}}�−8since the totalweight is kept fixedaswehaveseen
before. However, by the similar argument as for the 2-connected case, we obtainw′(x)�0
for all x ∈ (V (B) ∪ F(B))\{v0}. It follows that

∑{w′(x)|x ∈ (V (B) ∪ F(B))\{v0}}�0,
a contradiction. This completes the proof of Theorem 1.3.

Remark. Borodin et al.[5] currently move a further step closer to solving Steinberg’s
problem by showing that a planar graphG is 3-colorable ifG contains no cycles of length
in {4, 5, 6, 7}. In [10], we also proved that a planar graphG is 3-choosable ifG contains no
cycles of length in{4, 5, 7, 9}.
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