1,429 research outputs found

    Control of a lane-drop bottleneck through variable speed limits

    Full text link
    In this study, we formulate the VSL control problem for the traffic system in a zone upstream to a lane-drop bottleneck based on two traffic flow models: the Lighthill-Whitham-Richards (LWR) model, which is an infinite-dimensional partial differential equation, and the link queue model, which is a finite-dimensional ordinary differential equation. In both models, the discharging flow-rate is determined by a recently developed model of capacity drop, and the upstream in-flux is regulated by the speed limit in the VSL zone. Since the link queue model approximates the LWR model and is much simpler, we first analyze the control problem and develop effective VSL strategies based on the former. First for an open-loop control system with a constant speed limit, we prove that a constant speed limit can introduce an uncongested equilibrium state, in addition to a congested one with capacity drop, but the congested equilibrium state is always exponentially stable. Then we apply a feedback proportional-integral (PI) controller to form a closed-loop control system, in which the congested equilibrium state and, therefore, capacity drop can be removed by the I-controller. Both analytical and numerical results show that, with appropriately chosen controller parameters, the closed-loop control system is stable, effect, and robust. Finally, we show that the VSL strategies based on I- and PI-controllers are also stable, effective, and robust for the LWR model. Since the properties of the control system are transferable between the two models, we establish a dual approach for studying the control problems of nonlinear traffic flow systems. We also confirm that the VSL strategy is effective only if capacity drop occurs. The obtained method and insights can be useful for future studies on other traffic control methods and implementations of VSL strategies.Comment: 31 pages, 14 figure

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201

    Vision-Based Lane-Changing Behavior Detection Using Deep Residual Neural Network

    Get PDF
    Accurate lane localization and lane change detection are crucial in advanced driver assistance systems and autonomous driving systems for safer and more efficient trajectory planning. Conventional localization devices such as Global Positioning System only provide road-level resolution for car navigation, which is incompetent to assist in lane-level decision making. The state of art technique for lane localization is to use Light Detection and Ranging sensors to correct the global localization error and achieve centimeter-level accuracy, but the real-time implementation and popularization for LiDAR is still limited by its computational burden and current cost. As a cost-effective alternative, vision-based lane change detection has been highly regarded for affordable autonomous vehicles to support lane-level localization. A deep learning-based computer vision system is developed to detect the lane change behavior using the images captured by a front-view camera mounted on the vehicle and data from the inertial measurement unit for highway driving. Testing results on real-world driving data have shown that the proposed method is robust with real-time working ability and could achieve around 87% lane change detection accuracy. Compared to the average human reaction to visual stimuli, the proposed computer vision system works 9 times faster, which makes it capable of helping make life-saving decisions in time

    Dynamic Message Sign and Diversion Traffic Optimization

    Get PDF
    This dissertation proposes a Dynamic Message Signs (DMS) diversion control system based on principles of existing Advanced Traveler Information Systems and Advanced Traffic Management Systems (ATMS). The objective of the proposed system is to alleviate total corridor traffic delay by choosing optimized diversion rate and alternative road signal-timing plan. The DMS displays adaptive messages at predefined time interval for guiding certain number of drivers to alternative roads. Messages to be displayed on the DMS are chosen by an on-line optimization model that minimizes corridor traffic delay. The expected diversion rate is assumed following a distribution. An optimization model that considers three traffic delay components: mainline travel delay, alternative road signal control delay, and the travel time difference between the mainline and alternative roads is constructed. Signal timing parameters of alternative road intersections and DMS message level are the decision variables; speeds, flow rates, and other corridor traffic data from detectors serve as inputs of the model. Traffic simulation software, CORSIM, served as a developmental environment and test bed for evaluating the proposed system. MATLAB optimization toolboxes have been applied to solve the proposed model. A CORSIM Run-Time-Extension (RTE) has been developed to exchange data between CORSIM and the adopted MATLAB optimization algorithms (Genetic Algorithm, Pattern Search in direct search toolbox, and Sequential Quadratic Programming). Among the three candidate algorithms, the Sequential Quadratic Programming showed the fastest execution speed and yielded the smallest total delays for numerical examples. TRANSYT-7F, the most credible traffic signal optimization software has been used as a benchmark to verify the proposed model. The total corridor delays obtained from CORSIM with the SQP solutions show average reductions of 8.97%, 14.09%, and 13.09% for heavy, moderate and light traffic congestion levels respectively when compared with TRANSYT-7F optimization results. The maximum model execution time at each MATLAB call is fewer than two minutes, which implies that the system is capable of real world implementation with a DMS message and signal update interval of two minutes
    • …
    corecore