3 research outputs found

    Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method

    Get PDF
    The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered

    Application of higher order Haar wavelet method for solving nonlinear evolution equations

    Get PDF
    The recently introduced higher order Haar wavelet method is treated for solving evolution equations. The wave equation, the Burgers’ equations and the Korteweg-de Vries equation are considered as model problems. The detailed analysis of the accuracy of the Haar wavelet method and the higher order Haar wavelet method is performed. The obtained results are validated against the exact solutions

    Solving nonlinear PDEs using the higher order Haar wavelet method on nonuniform and adaptive grids

    Get PDF
    The higher order Haar wavelet method (HOHWM) is used with a nonuniform grid to solve nonlinear partial differential equations numerically. The Burgers’ equation, the Korteweg–de Vries equation, the modified Korteweg–de Vries equation and the sine–Gordon equation are used as model equations. Adaptive as well as nonadaptive nonuniform grids are developed and used to solve the model equations numerically. The numerical results are compared to the known analytical solutions as well as to the numerical solutions obtained by application of the HOHWM on a uniform grid. The proposed methods of using nonuniform grid are shown to significantly increase the accuracy of the HOHWM at the same number of grid points
    corecore