228 research outputs found

    Estimation of Markov Chain via Rank-Constrained Likelihood

    Full text link
    This paper studies the estimation of low-rank Markov chains from empirical trajectories. We propose a non-convex estimator based on rank-constrained likelihood maximization. Statistical upper bounds are provided for the Kullback-Leiber divergence and the â„“2\ell_2 risk between the estimator and the true transition matrix. The estimator reveals a compressed state space of the Markov chain. We also develop a novel DC (difference of convex function) programming algorithm to tackle the rank-constrained non-smooth optimization problem. Convergence results are established. Experiments show that the proposed estimator achieves better empirical performance than other popular approaches.Comment: Accepted at ICML 201

    Identification of Structured LTI MIMO State-Space Models

    Full text link
    The identification of structured state-space model has been intensively studied for a long time but still has not been adequately addressed. The main challenge is that the involved estimation problem is a non-convex (or bilinear) optimization problem. This paper is devoted to developing an identification method which aims to find the global optimal solution under mild computational burden. Key to the developed identification algorithm is to transform a bilinear estimation to a rank constrained optimization problem and further a difference of convex programming (DCP) problem. The initial condition for the DCP problem is obtained by solving its convex part of the optimization problem which happens to be a nuclear norm regularized optimization problem. Since the nuclear norm regularized optimization is the closest convex form of the low-rank constrained estimation problem, the obtained initial condition is always of high quality which provides the DCP problem a good starting point. The DCP problem is then solved by the sequential convex programming method. Finally, numerical examples are included to show the effectiveness of the developed identification algorithm.Comment: Accepted to IEEE Conference on Decision and Control (CDC) 201

    A Unified Bregman Alternating Minimization Algorithm for Generalized DC Programming with Application to Imaging Data

    Full text link
    In this paper, we consider a class of nonconvex (not necessarily differentiable) optimization problems called generalized DC (Difference-of-Convex functions) programming, which is minimizing the sum of two separable DC parts and one two-block-variable coupling function. To circumvent the nonconvexity and nonseparability of the problem under consideration, we accordingly introduce a Unified Bregman Alternating Minimization Algorithm (UBAMA) by maximally exploiting the favorable DC structure of the objective. Specifically, we first follow the spirit of alternating minimization to update each block variable in a sequential order, which can efficiently tackle the nonseparablitity caused by the coupling function. Then, we employ the Fenchel-Young inequality to approximate the second DC components (i.e., concave parts) so that each subproblem reduces to a convex optimization problem, thereby alleviating the computational burden of the nonconvex DC parts. Moreover, each subproblem absorbs a Bregman proximal regularization term, which is usually beneficial for inducing closed-form solutions of subproblems for many cases via choosing appropriate Bregman kernel functions. It is remarkable that our algorithm not only provides an algorithmic framework to understand the iterative schemes of some novel existing algorithms, but also enjoys implementable schemes with easier subproblems than some state-of-the-art first-order algorithms developed for generic nonconvex and nonsmooth optimization problems. Theoretically, we prove that the sequence generated by our algorithm globally converges to a critical point under the Kurdyka-{\L}ojasiewicz (K{\L}) condition. Besides, we estimate the local convergence rates of our algorithm when we further know the prior information of the K{\L} exponent.Comment: 44 pages, 7figures, 5 tables. Any comments are welcom

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    A Boosted-DCA with Power-Sum-DC Decomposition for Linearly Constrained Polynomial Programs

    Full text link
    This paper proposes a novel Difference-of-Convex (DC) decomposition for polynomials using a power-sum representation, achieved by solving a sparse linear system. We introduce the Boosted DCA with Exact Line Search (BDCAe) for addressing linearly constrained polynomial programs within the DC framework. Notably, we demonstrate that the exact line search equates to determining the roots of a univariate polynomial in an interval, with coefficients being computed explicitly based on the power-sum DC decompositions. The subsequential convergence of BDCAe to critical points is proven, and its convergence rate under the Kurdyka-Lojasiewicz property is established. To efficiently tackle the convex subproblems, we integrate the Fast Dual Proximal Gradient (FDPG) method by exploiting the separable block structure of the power-sum DC decompositions. We validate our approach through numerical experiments on the Mean-Variance-Skewness-Kurtosis (MVSK) portfolio optimization model and box-constrained polynomial optimization problems. Comparative analysis of BDCAe against DCA, BDCA with Armijo line search, UDCA, and UBDCA with projective DC decomposition, alongside standard nonlinear optimization solvers FMINCON and FILTERSD, substantiates the efficiency of our proposed approach.Comment: 39 pages, 5 figure

    Solving And Applications Of Multi-Facility Location Problems

    Get PDF
    This thesis is devoted towards the study and solving of a new class of multi-facility location problems. This class is of a great theoretical interest both in variational analysis and optimization while being of high importance to a variety of practical applications. Optimization problems of this type cannot be reduced to convex programming like, the much more investigated facility location problems with only one center. In contrast, such classes of multi-facility location problems can be described by using DC (difference of convex) programming, which are significantly more involved from both theoretical and numerical viewpoints.In this thesis, we present a new approach to solve multi-facility location problems, which is based on mixed integer programming and algorithms for minimizing differences of convex (DC) functions. We then computationally implement the proposed algorithm on both artificial and real data sets and provide many numerical examples. Finally, some directions and insights for future work are detailed
    • …
    corecore