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Chapter 1 INTRODUCTION AND PROBLEM FORMULATION

In the seventeenth century, Pierre de Fermat postulated a problem of finding a point

that minimizes the sum of its Euclidean distances to three given points in the plane. The

problem was soon solved by Evangelista Torricelli, and is now famously known as the Fermat–

Torricelli problem. This problem and its extended version that constitutes a finite number

of points in higher dimensions are examples of continuous single facility location problems.

Over the years several generalized models of the Fermat–Torricelli type have been introduced

and studied in the literature with some practical applications to facility location decisions

which can be found in [1–6] and the references therein. It is to be noted that an important

feature of single facility location problems and the problems studied in the aforementioned

references is that only one center/server has to be found to serve a finitely many demand

points/customers.

However, numerous practical applications lead to formulations of facility location prob-

lems in which more than one center must be found to serve a finite number of demand

points. Such problems are referred to as multi-facility location problems (MFLPs). Given a

finite number of demand points a1, . . . , an in Rd, we consider in this thesis the facility loca-

tion in which k centers v1, . . . , vk (1 ≤ k ≤ n) in Rd need to be found to serve these demand

points by assigning each of them to its nearest center and minimizing the total distances from

the centers to the assigned demand points. In the case where k = 1, this problem reduces to

the generalized Fermat-Torricelli problem of finding a point that minimizes the sum of the

distances to a finite number of given points in Rd.

We formulate the problem under consideration in this thesis as the following problem of

mixed integer programming with nonsmooth objective functions. For convenience we will use

a variable k × d-matrix V with vi as its ith row to store the centers to be found. We will

also use another variable k × n-matrix U = [ui,j] with ui,j ∈ {0, 1} and
∑k

i=1 ui,j = 1 for
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j = 1, . . . , n to assign demand points to the centers. The set of all such matrices shall be

denoted by U . Note that ui,j = 1 if the center vi is assigned to the demand point aj while∑k
i=1 ui,j = 1 means that the demand point aj is assigned to only one center. Our goal is to

solve the constrained optimization problem formulated as follows:

minimize F(U,V) :=
∑k

i=1

∑n
j=1 u

2
i,j‖aj − vi‖

subject to U ∈ U and V ∈ Rk×d.

(1.1)

Taking into account that ui,j ∈ {0, 1}, it is convenient to use u2
i,j instead of ui,j in the

definition of the objective function F as seen in Section 4.2.

It is noteworthy that a similarly looking problem was considered by An, Minh and Tao [7]

for different purposes. However, the main difference between our problem (1.1) and the one

from [7] is that in [7] the squared Euclidean norm is used instead of the Euclidean norm in

our formulation. From practical standpoint this difference is significant; namely, using the

Euclidean norm allows us to model the total distance in supply delivery, while using the

squared Euclidean norm is meaningful in clustering. Mathematically, these two problems are

essentially different as well. In addition to the challenging discrete nature and nonconvexity

that both problems share, the objective function of our multi-facility location problem (1.1)

is nondifferentiable in contrast to [7]. This is a yet another serious challenge from both

theoretical and algorithmic viewpoints. It is also to be observed that for k = 1 our problem

becomes the aforementioned generalized Fermat-Torricelli problem that does not have a

closed-form solution, while the problem considered in [7] reduces to the standard problem of

minimizing the sum of squares of the Euclidean distances to the demand points. The latter

has a simple closed form solution given by the aggregate of the data points.

In this thesis, we develop the following algorithmic procedure to solve the formulated

nonsmooth problem (1.1) of mixed integer programming:

(i) Employ Nesterov’s smoothing to approximate the nonsmooth objective function in
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(1.1) by a family of smooth functions, which are represented as differences of convex (DC)

functions.

(ii) Enclose the obtained smooth discrete problems into constrained problems of contin-

uous DC optimization and then approximate them by unconstrained ones using a penalty

function.

(iii) Solve the latter class of problems by developing an suitable modification of the

algorithm for minimizing differences of convex functions known as the DCA.

As a consequence of all the three steps mentioned above, we propose a new algorithm for

solving the class of multi-facility local problems of type (1.1), verify its efficacy and numerical

implementation on both artificial and real data sets.

The early developments on the DCA trace back to the work by Tao in 1986 with more

recent results presented in [7–10,14,15], and the bibliographies therein. Moreover, Nesterov’s

smoothing technique was introduced in his seminal paper [11] and was further developed

and applied in many great publications [12, 13]. The combination of these two important

tools provides an effective way to deal with nonconvexity and nondifferentiability in many

optimization problems encountered in facility location, machine learning, compressed sensing,

and imaging. It is demonstrated in this thesis in solving multi-facility location problems of

type (1.1).

The present thesis is structured as follows. Chapter 2 contains the basic definitions and

some preliminaries, required for understanding of the notations used. In Chapter 3 we briefly

overview two versions of the DCA, discuss their convergence, and present two examples that

illustrate their performances.

Chapter 4 is devoted to applying Nesterov’s smoothing technique to the objective func-

tion of the multi-facility location problem (1.1) and constructing in this way a smooth ap-

proximation of the original problem by a family of DC ones. Further, we reduce the latter

smooth DC problems of discrete constrained optimization to unconstrained problems by
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using an appropriate penalty function method. Finally, the obtained discrete optimization

problems are enclosed into the DC framework of unconstrained continuous optimization.

In Chapter 5 we propose a new algorithm to solve the multi-facility location problem

(1.1) by applying the updated version of the DCA taken from Chapter 3 to the smooth DC

problems of continuous optimization constructed in Chapter 4. Additionally, the proposed

algorithm is implemented to solve several multi-facility problems arising in practical mod-

eling. Finally, Chapter 6 summarizes the obtained results and discusses some directions for

future work.
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Chapter 2 BACKGROUND

2.1 BASIC NOTATION AND DEFINITIONS

In this chapter, we define some basic terms that are required to understand this thesis.

We also provide a previously known result concerning Fenchel conjugate of a convex function.

Definition 2.1. A function ϕ : Rd → R ∪ {+∞} is said to be proper if dom (ϕ) 6= ∅ and

ϕ(x) 6= −∞ for all x ∈ Rd.

Definition 2.2. A function ϕ : Rd → R ∪ {−∞,+∞} is said to be lower semicontinuous

(l.s.c.) if,

lim inf
x→x̄

ϕ(x) ≥ ϕ(x̄) for all x̄ ∈ Rd.

Definition 2.3. A function ϕ : Rd → R := (−∞,∞] is coercive if

lim
‖x‖→∞

ϕ(x)

‖x‖
=∞.

Definition 2.4. A set Ω ⊂ Rd is said to be a convex set if

λx+ (1− λ)y ∈ Ω

for all x 6= y ∈ Ω, λ ∈ [0, 1].

Definition 2.5. A function ϕ : Rd → R ∪ {−∞,+∞} is said to be a convex function if

dom (ϕ) is a convex set and

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)

for all x 6= y ∈ dom (ϕ), λ ∈ [0, 1].

Definition 2.6. A function ϕ : Rd → (−∞,∞] is said to be γ−convex with a given modulus

γ ≥ 0 if the function

ϕ(x)− γ

2
‖x‖2 for all x ∈ Rd
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is convex.

Definition 2.7. A function ϕ : Rd → (−∞,∞] is said to be strongly convex on Rd, if there

exists γ > 0 such that ϕ is γ−convex.

Definition 2.8. Consider the difference of two convex functions g−h on a finite-dimensional

space and assume that g : Rd → R is extended-real-valued while h : Rd → R is real-valued

on Rd. Then a general problem of DC optimization is defined by:

minimize f(x) := g(x)− h(x), x ∈ Rd. (2.1)

Note that problem (2.1) is written in the unconstrained format, but—due to the al-

lowed infinite value for g—it actually contains the domain constraint x ∈ dom (g) := {u ∈

Rd | g(u) <∞}. Furthermore, the explicit constraints of the type x ∈ Ω given by a nonempty

convex set Ω ⊂ Rd can be incorporated into the format of (2.1) via the indicator function

δΩ(x) of Ω, which equals 0 for x ∈ Ω and ∞ otherwise. The representation f = g − h is

called a DC decomposition of f . Note that the class of DC functions is fairly large and in-

clude many nonconvex functions important in optimization. We refer the reader to the recent

book [17] with the commentaries and bibliographies therein for various classes of nonconvex

optimization problems that can be represented in the DC framework (2.1).

Definition 2.9. For a nonempty set Ω ⊂ Rd and a point x ∈ Rd, The Euclidean distance of

x onto Ω, is the set, denoted by d(x; Ω), defined as

d(x; Ω) := inf
{
‖x− w‖

∣∣ w ∈ Ω
}
. (2.2)

Definition 2.10. For a nonempty set Ω ⊂ Rd and a point x ∈ Rd, The Euclidean projection

of x onto Ω, is the set, denoted by P (x; Ω), defined as

P (x; Ω) := argmin{‖x− w‖ : w ∈ Ω}, (2.3)

i.e., it is the set of all those points in Ω that are closest to x in terms of the Euclidean

distance.
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Note that P (x; Ω) 6= ∅ for closed sets Ω while being always a singleton if the set Ω is

convex.

Definition 2.11. Given a function ϕ (not necessarily convex), the convex conjugate (com-

monly known as the Fenchel Conjugate) of ϕ, denoted by ϕ∗, is defined as

ϕ∗(v) = sup
x∈Rd

{〈v, x〉 − ϕ(x)}.

Noe that if ϕ is proper, its Fenchel conjugate ϕ∗ : Rd → R is automatically convex.

Definition 2.12. Given a (convex) function ϕ and a point x̄ ∈ dom (ϕ). The subdifferential

of ϕ : Rd → R at x̄, denoted by ∂ϕ(x̄), is the set of subgradients given by

∂ϕ(x̄) :=
{
v ∈ Rd

∣∣ 〈v, x− x̄〉 ≤ ϕ(x)− ϕ(x̄) for all x ∈ Rd
}
. (2.4)

Noe that if x̄ /∈ dom (ϕ), we let ∂ϕ(x̄) := ∅. Recall that for functions ϕ that are differentiable

at x̄ with the gradient given by ∇ϕ(x̄) we have ∂ϕ(x̄) = {∇ϕ(x̄)}.

Definition 2.13. A vector x̄ ∈ Rd is a stationary point of the DC function f from (2.1) if

∂g(x̄) ∩ ∂h(x̄) 6= ∅.

Definition 2.14. Given variable matrix U ∈ Rk×n as in the optimization problem (1.1), the

Frobenius norm on Rk×n is defined by

‖U‖F :=

√√√√ k∑
i=1

n∑
j=1

|ui,j|2. (2.5)

Fact 2.15. [20, Proposition 2.35, Page 56] For a convex function ϕ : Rn → R, the following

are equivalent:

(i) ϕ is minimized at x over Rn, i.e., ϕ(y) ≥ ϕ(x) for all y ∈ Rn.

(ii) 0 ∈ ∂ϕ(x).
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Note that the condition 0 ∈ ∂ϕ(x) is the generalization of the usual stationary condition

∇ϕ(x) = 0 of the smooth case.

Finally in this chapter, we present the following proposition that gives a two-sided rela-

tionship between the Fenchel conjugates and subgradients of convex functions. Proposition

2.16 appears in [16, Corollary 1.4.4, Page 221], we recreate (and slightly expand) the proof

for completeness.

Proposition 2.16. Let ϕ : Rd → R be a proper, l.s.c, and convex function. Then v ∈ ∂ϕ∗(y)

if and only if

v ∈ argmin
{
ϕ(x)− 〈y, x〉

∣∣ x ∈ Rd
}
. (2.6)

Furthermore, we have that w ∈ ∂ϕ(x) if and only if

w ∈ argmin
{
ϕ∗(y)− 〈x, y〉

∣∣ y ∈ Rd
}
. (2.7)

Proof. To justify the first assertion, suppose that (2.6) is satisfied which yields 0 ∈ ∂ψ(v),

where ψ(x) := ϕ(x)− 〈y, x〉 as x ∈ Rd. It tells us that

0 ∈ ∂ϕ(v)− y,

and hence y ∈ ∂ϕ(v), which is equivalent to v ∈ ∂ϕ∗(y) due to the biconjugate relationship

ϕ∗∗ = ϕ valued under the assumptions made.

Conversely, assuming v ∈ ∂ϕ∗(y) gives us by the proof above that 0 ∈ ∂ψ(v), which

clearly yields (2.6) and thus justifies the first assertion.

Next we justify the second assertion, suppose that (2.7) holds which gives 0 ∈ ∂ψ(w),

where ψ(y) := ϕ∗(y)− 〈x, y〉 as y ∈ Rd. This clearly implies that

0 ∈ ∂ϕ∗(w)− x,

and hence x ∈ ∂ϕ∗(w), which is equivalent to w ∈ ∂ϕ(x) due to the biconjugate relationship.

The proof of the reverse implication in (2.7) is similar to the one given above.
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Chapter 3 DCA OVERVIEW AND SOME EXAMPLES

In this chapter we present two algorithms of the DCA type to solve DC problems (2.1)

while referring the reader to [14, 15] for more details and further developments. We also

present some convergence results and provide numerical examples illustrating both algo-

rithms.

3.1 THE GENERIC DCA

In this section, we present a generic DCA which is a simple yet an effective optimiza-

tion scheme for minimizing differences of convex functions. The algorithm is summarized as

follows, as applied to (2.1).

Algorithm 1: DCA-1.

INPUT: x0 ∈ Rd, N ∈ N.

for l = 1, . . . , N do

Find yl−1 ∈ ∂h(xl−1).

Find xl ∈ ∂g∗(yl−1).

end for

OUTPUT: xN .

Recall, the convex function h : Rd → R in (2.1) is real-valued on the whole space Rd, we

always have ∂h(x) 6= ∅ for all x ∈ Rd. Simultaneously, the other convex function g : Rd → R

in (2.1) is generally extended-real-valued, and so the subdifferential of its conjugate g∗ may

be empty. The following proposition excludes such a possibility.

Proposition 3.1 appears in [18, Proposition 1.3.8, Page 46], we recreate (and slightly

expand) the proof for completeness.

Proposition 3.1. Let g : Rd → R be a proper, l.s.c, and convex function. If in addition g is

coercive, then ∂g∗(v) 6= ∅ for all v ∈ Rd.
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Proof. Since g is proper, the conjugate function g∗ takes values in (−∞,∞] being convex on

Rd. Taking into account that g is also lower semicontinuous and invoking the aforementioned

biconjugate relationship, we find w ∈ Rd and c ∈ R such that

c+ 〈w, x〉 ≤ g(x) for all x ∈ Rd. (3.1)

The coercivity property of g ensures the existence of η > 0 for which

‖x‖
(
‖w‖+ 1

)
≤ g(x) whenever ‖x‖ ≥ η.

It follows furthermore that

sup
{
〈v, x〉 − g(x)

∣∣ ‖x‖ ≥ η
}
≤ −‖x‖ for any v ∈ Rd.

By using (3.1), we arrive at the estimates

sup
{
〈v, x〉 − g(x)

∣∣ ‖x‖ ≤ η
}
≤ sup

{
〈v, x〉 − 〈w, x〉 − c

∣∣ ‖x‖ ≤ η
}
<∞, v ∈ Rd.

This tells us that g∗(v) < ∞, and therefore dom (g∗) = Rd. Since g∗ is a convex function

with finite values, it is continuous on Rd and hence ∂g∗(v) 6= ∅ for all v ∈ Rd.

Given a DCA, a natural question to ask is whether it has good convergence. The following

result, which can be derived from [14,15], summarizes some convergence results of the DCA.

Furthermore, deeper studies about the convergence of this algorithm and its generalizations

involving the Kurdyka-Lojasiewicz (KL) inequality are discussed in [8, 10].

Fact 3.2. Let f be a DC function taken from (2.1), and let {xl} be an iterative sequence

generated by Algorithm 1. The following assertions hold:

1. The sequence {f(xl)} is always monotone decreasing.

2. Suppose that f is bounded from below, that g is l.s.c and γ1-convex, and that h is γ2-

convex with γ1+γ2 > 0. If {xl} is bounded, then the limit of any convergent subsequence

of {xl} is a stationary point of f .
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Having established the convergence of Algorithm 1. We now present an example to illus-

trate its performance and compare it to the classical gradient method [19, Definition 2.2.2,

Page 58].

Example 3.3. Consider the function f : R→ R given

f(x) := x4 − 2x2 + 2x− 3 for x ∈ R.

Note that f admits the DC representation given as follows

f = g − h,

= (x4)− (2x2 − 2x+ 3),

where g(x) := x4 and h(x) := 2x2 − 2x+ 3 respectively.

To minimize f , we first apply the gradient method with constant stepsize t > 0. Calcu-

lating the derivative of f as

f ′(x) = 4x3 − 4x+ 2

and picking an arbitrary starting point x0 ∈ R, we get the following sequence of iterates

xl+1 = xl − t(4x3
l − 4xl + 2) for l = 0, 1, . . . ..

constructed by the gradient method.

Subsequently, the usage of the DC Algorithm 1 (DCA-1) gives us

yl = ∇h(xl) = 4xl − 2,

g∗(x) = 3(x/4)4/3,

∇g∗(x) = (x/4)1/3.

Hence the iterates of DCA-1 are given by

xl+1 = ∇g∗(yl) =
(yl

4

)1/3

=
(4xl − 2

4

)1/3

=
(2xl − 1

2

)1/3

, l = 0, 1, . . . .
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Figure 1 below provides the visualization and establishes that for x0 = 0 and t = 0.01

the DCA-1 exhibits much faster convergence.

0 3 10 20 40 50 60
Iteration l

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

f(
x l)

Gradient Descent
DCA-1

Figure 1: Convergence of the Gradient Method and DCA-1.

3.2 MODIFIED VERSION OF THE DCA

In many practical applications of Algorithm 1, for a given DC decomposition of f it is

possible to find subgradient vectors from ∂h(xl−1) based on available formulas and calculus

rules of convex analysis. However, it may not be possible to explicitly compute an element

of ∂g∗(yl−1). Such a situation requires either constructing a more suitable DC decomposition

of f , or finding xl ∈ ∂g∗(yl−1) by using the description of Proposition 2.16.

In this section we present the following modified version of DCA-1 and discuss its con-

vergence.

Algorithm 2: DCA-2.
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INPUT: x0 ∈ Rd, N ∈ N

for l = 1, . . . , N do

Find yl−1 ∈ ∂h(xl−1)

Find xl by solving the problem:

minimize ϕl(x) := g(x)− 〈yl−1, x〉, x ∈ Rd.

end for

OUTPUT: xN

The following two-dimensional example illustrates the performance of the DCA-2.

Example 3.4. Consider the nonsmooth optimization problem defined by

minimize f(x1, x2) := x4
1 + x2

2 − 2x2
1 − |x2| over x = (x1, x2) ∈ R2.

as depicted in Figure 2 below. We observe that this function has four global minimizers,

which are (1, 0.5), (1,−0.5), (−1, 0.5), and (−1,−0.5).

-2

0

2

2

4

6

f(
x)

8

10

21 1

x
2

0

x
1

0-1 -1-2 -2

Figure 2: Graph of f(x1, x2) := x4
1 + x2

2 − 2x2
1 − |x2|.
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It is easy to see that f admits a DC representation given by

f = g − h,

= (x4
1 + x2

2)− (2x2
1 + |x2|),

where g(x1, x2) := x4
1 + x2

2 and h(x1, x2) := 2x2
1 + |x2| respectively.

Moreover, the gradient ∇g(x) and the Hessian ∇2g(x) of g(x) are given by

∇g(x) = [4x3
1, 2x2]T ,

and

∇2g(x) =

12x1
2 0

0 2

 .
It is noteworthy that an explicit formula to calculate ∂g∗(yl) is not available. Thus, we

apply the DCA-2 to solve this problem. The subdifferential of h is calculated as

∂h(x) =
[
4x1, sign(x2)

]T for any x = (x1, x2) ∈ R2.

Having yl−1, we proceed with solving the subproblem

minimize ϕl(x) := g(x)− 〈yl−1, x〉 over x ∈ R2 (3.2)

by the classical Newton method [19, Remark 2.3.5, Page 64] with ∇2ϕl(x) = ∇2g(x) and

observe that the DCA-2 shows its superiority in convergence with different choices of initial

points.

Figure 3 below presents the results of computation by using the DCA-2 with the starting

point x0 = (−2, 2) and employing the Newton method with ε = 10−8 to solve the subproblem

(3.2).



15

0 4 10 20 40 50
Iteration l

-2

0

2

4

6

8

10

f(
x l)

DCA-2 method

Figure 3: Convergence of the DCA-2.

Chapter 4 SMOOTH APPROXIMATION BY CONTINUOUS DC PROB-
LEMS

Notice that the main challenges for solving the multi-facility location problem (1.1) come

from its intrinsic discrete, nonconvex, and nondifferentiable nature.

In this chapter we employ and further develop Nesterov’s smoothing technique for the

case of multi-facility location problem (1.1). We also enclose the family of DC mixed integer

programs obtained in this way into a class of smooth DC problems of continuous opti-

mization. The suggested procedures are efficiently justified by deriving numerical estimates

expressed entirely via the given data of the original problem (1.1).

4.1 SMOOTH FORMULATION OF THE OBJECTIVE FUNCTION F

We begin by considering the following result which is a direct consequence of Nesterov’s

smoothing technique given in [12] and [6, Proposition 3.1, Page 8].
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Fact 4.1. Given any a ∈ Rd and µ > 0, a Nesterov smoothing approximation of the function

f : Rd → R defined by

f(x) := ‖x− a‖, x ∈ Rd,

admits the smooth DC representation

fµ(x) :=
1

2µ
‖x− a‖2 − µ

2

[
d

(
x− a
µ

;B
)]2

.

Furthermore, we have the relationships

∇fµ(x) = P

(
x− a
µ

;B
)

and fµ(x) ≤ f(x) ≤ fµ(x) +
µ

2
,

where B ⊂ Rd is the closed unit ball, and where P stands for the Euclidean projection given

by (2.3).

Using Fact 4.1 we approximate the objective function F in (1.1) by a smooth DC function

Fµ as µ > 0 defined as follows:

Fµ(U,V) :=
1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2 − µ

2

k∑
i=1

n∑
j=1

u2
i,j

[
d

(
aj − vi
µ

;B
)]2

,

= Gµ(U,V)−Hµ(U,V),

where Gµ,Hµ : Rk×n × Rk×d → R are given by

Gµ(U,V) :=
1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2,

Hµ(U,V) :=
µ

2

k∑
i=1

n∑
j=1

u2
i,j

[
d

(
aj − vi
µ

;B
)]2

.

This leads us to the construction of the following family of smooth approximations of the

main problem (1.1) defined as

minimize Fµ(U,V) := Gµ(U,V)−Hµ(U,V) as µ > 0

subject to U ∈ U = ∆n ∩ {0, 1}k×n and V ∈ Rk×d,

(4.1)
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where ∆n is the the nth Cartesian degree of the (k − 1)-simplex ∆ := {y ∈

[0, 1]k |
∑k

i=1 yi = 1}, which is a subset of Rk.

4.2 WELL-POSEDNESS AND CONTINUOUS FORMULATION

We observe that for each µ > 0 problem (4.1) is of discrete optimization, while our

intention is to convert it to a family of problems of continuous optimization for which we are

going to develop and implement a DCA-based algorithm in Chapter 5.

In this section we derive two results, which justifies such a reduction. The following

Theorem 4.2 allows us to verify the existence of optimal solutions to the constrained opti-

mization problems that appear in this procedure. It is required for having well-posedness of

the algorithm construction.

Theorem 4.2. Let (U,V) be an optimal solution to problem (4.1). Then for any µ > 0

we have V ∈ B, where B :=
∏k

i=1Bi is the Cartesian product of the k Euclidean balls Bi

centered at 0 ∈ Rd with radius r :=
√∑n

j=1 ‖aj‖2 that contains the optimal centers v̄i for

each index i = 1, . . . , k.

Proof. We can clearly rewrite the objective function in (4.1) in the form

Fµ(U,V) =
1

2µ

k∑
i=1

n∑
j=1

ui,j‖aj − vi‖2 − µ

2

k∑
i=1

n∑
j=1

ui,j

[
d

(
aj − vi
µ

;B
)]2

(4.2)

due to interchangeability between u2
i,j and ui,j.

Observe that Fµ(U,V) is differentiable on Rk×n×Rk×d. Employing Fact 2.15 with respect

to V gives us ∇VFµ(U,V) = 0. To calculate this partial gradient, we need some clarification

for the second term in (4.2), which is differentiable as a whole while containing the nonsmooth

distance function (2.2).

The convexity of the distance function in the setting of (4.2) allows us to apply the

subdifferential calculation of convex analysis [20, Theorem 2.39, Page 57] and to combine
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it with an appropriate chain rule to handle the composition in (4.2). Observe that the

squared distance function in (4.2) is the composition of the nondecreasing convex function

ϕ(t) := t2 on [0,∞) and the distance function to the ball B. Thus, the chain rule from [20,

Corollary 2.62, Page 73] is applicable. Hence, we obtain d2(·;B) is differentiable with

∇d2(x;B) = 2[x− P (x;B)] for x ∈ Rd. (4.3)

Using (4.3), we consider the following two cases:

Case 1: (aj − v̄i)/µ ∈ B for the fixed indices i ∈ {1, . . . , k} and j ∈ {1, . . . , n}. Then

∇d2

(
aj − v̄i
µ

;B
)

= {0},

which gives us

∂Fµ
∂vi

(U,V) =
1

µ

n∑
j=1

ūi,j(v̄i − aj), i = 1, . . . , k,

for the corresponding partial derivatives of Fµ.

Case 2: (aj − v̄i)/µ /∈ B for the fixed indices i ∈ {1, . . . , k} and j ∈ {1, . . . , n}.

In this case we have

∂Fµ
∂vi

(U,V) =
1

2µ

n∑
j=1

ūi,j2(v̄i − aj) +
n∑
j=1

ūi,j

[
aj − v̄i
µ

− P
(
aj − v̄i
µ

;B
)]

=
1

µ

n∑
j=1

ūi,j(v̄i − aj) +
n∑
j=1

ūi,j

[
aj − v̄i
µ

−
(

aj − v̄i
‖aj − v̄i‖

)]

=
1

‖aj − v̄i‖

n∑
j=1

ūi,j(v̄i − aj).

Thus in both cases above it follows from the stationary condition ∇VFµ(U,V) = 0 that

v̄i =

∑n
j=1 ūi,jaj∑n
j=1 ūi,j

for all i = 1, . . . , k,

since we have
n∑
j=1

ūi,j > 0 due to the nonemptiness of the clusters.
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Finally, employing the classical Cauchy-Schwarz inequality leads us to the estimates

‖v̄i‖2 ≤

(∑n
j=1 ūi,jaj

)2

(∑n
j=1 ūi,j

)2 ≤
n∑
j=1

‖aj‖2 := r2,

which therefore verify all the conclusions of the theorem.

Our next step is to enclose each discrete optimization problem (4.1) into the corresponding

one of continuous optimization. For the reader’s convenience if no confusion arises, we keep

the same notation U for all the k × n-matrices without the discrete restrictions on their

entries.

We now define the function P : Rk×n → R by

P(U) :=
k∑
i=1

n∑
j=1

ui,j(1− ui,j) for all U ∈ Rk×n,

and observe that this function is concave on Rk×n with P(U) ≥ 0 whenever U ∈ ∆n.

Furthermore, we have the representations

U =
{
U ∈ ∆n

∣∣ P(U) = 0
}

=
{
U ∈ ∆n

∣∣ P(U) ≤ 0
}

(4.4)

for the set of feasible k × n-matrices U in the original problem (1.1). Employing further the

standard penalty function method [7, Theorem 1, Page 392] allows us to eliminate the most

involved constraint on U in (4.4) given by the function P . Taking the penalty parameter

α > 0 sufficiently large and using the smoothing parameter µ > 0 sufficiently small, we

consider the following family of continuous optimization problems:

minimize Fµ(U,V) + αP(U) = Gµ(U,V)−Hµ(U,V) + αP(U)

subject to U ∈ ∆n and V ∈ B.
(4.5)

Observe that Theorem 4.2 ensures the existence of feasible solutions to problem (4.5)

and hence optimal solutions to this problem by the classical Weierstrass theorem due to the

continuity of the objective functions therein and the compactness of the constraints sets ∆n
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and B.

We now introduce yet another parameter ρ > 0 ensuring a DC representation of the

objective function in (4.5) as follows:

Fµ(U,V) + αP(U) =
ρ

2
‖(U,V)‖2 −

(
ρ

2
‖(U,V)‖2 −Fµ(U,V)− αP(U)

)
=
ρ

2
‖(U,V)‖2 −

(
ρ

2
‖(U,V)‖2 − Gµ(U,V) +Hµ(U,V)− αP(U)

)
=: G(U,V)−H(U,V),

where the function G(U,V) :=
ρ

2
‖(U,V)‖2 is obviously convex, and

H(U,V) :=
ρ

2
‖(U,V)‖2 − Gµ(U,V) +Hµ(U,V)− αP(U).

Since Hµ(U,V) − αP(U) is also convex as α > 0, we are going to show that for any

given number µ > 0 it is possible to determine the values of the parameter ρ > 0 such that

the function
ρ

2
‖(U,V)‖2−Gµ(U,V) is convex under an appropriate choice of ρ. This would

yield the convexity of H(U,V) and therefore would justify a desired representation of the

objective function in (4.5). The following result gives us a precise meaning of this statement,

which therefore verifies the required reduction of (4.5) to a DC continuous optimization.

Theorem 4.3. The function

G1(U,V) :=
ρ

2
‖(U,V)‖2 − Gµ(U,V) (4.6)

is convex on ∆n × B provided that

ρ ≥ n

2µ

[(
1 +

1

n
ξ2

)
+

√(
1 +

1

n
ξ2

)2

+
12

n
ξ2

]
, (4.7)

where ξ := r + max
1≤j≤n

‖aj‖ and r :=
√∑n

j=1 ‖aj‖2.

Proof. Consider the function G1(U,V) defined in (4.6) for all (U,V) ∈ ∆n × B and deduce
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by elementary transformations directly from its construction that

G1(U,V) =
ρ

2
‖(U,V)‖2 − Gµ(U,V)

=
ρ

2
‖(U,V)‖2 − 1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2

=
ρ

2
‖U‖2 +

ρ

2
‖V‖2 − 1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2

=
ρ

2

k∑
i=1

n∑
j=1

u2
i,j +

ρ

2n

k∑
i=1

n∑
j=1

‖vi‖2 − 1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2

=
k∑
i=1

n∑
j=1

ρ

2
u2
i,j +

ρ

2n
‖aj − vi‖2 +

ρ

n
〈aj, vi〉 −

ρ

2n
‖aj‖2 − 1

2µ
u2
i,j‖aj − vi‖2.

Next we define the functions γi,j : R× Rd → R for all i = 1, . . . , k and j = 1, . . . , n by

γi,j(ui,j, vi) :=
ρ

2
u2
i,j +

ρ

2n
‖aj − vi‖2 − 1

2µ
u2
i,j‖aj − vi‖2 (4.8)

and show that each of these functions are convex on the set {ui,j ∈ [0, 1], ‖vi‖ ≤ r}, where

r > 0 is taken from Theorem 4.2.

To proceed, consider the Hessian matrix of each function in (4.8) given by

Jγi,j(ui,j, vi) :=

ρ−
1

µ
‖aj − vi‖2 − 2

µ
ui,j(vi − aj)

− 2

µ
ui,j(vi − aj)

ρ

n
− 1

µ
u2
i,j


and calculate its determinant det(Jγi,j(ui,j, vi)) by

det(Jγi,j(ui,j, vi)) :=

(
ρ− 1

µ
‖aj − vi‖2

)(
ρ

n
− 1

µ
u2
i,j

)
− 4

µ2
u2
i,j(vi − aj)T (vi − aj)

=
ρ2

n
− ρ
(
u2
i,j

µ
+

1

nµ
‖vi − aj‖2

)
−

3u2
i,j

µ2
‖vi − aj‖2.

It follows from the well-known second-order characterization of convexity [20, Theo-

rem 2.42, Page 60] that the function γi,j(ui,j, vi) is convex on {ui,j ∈ [0, 1], ‖vi‖ ≤ r} if

det(Jγi,j(ui,j, vi)) ≥ 0. Using [9, Theorem 1] gives us the estimate

det
(
Jγi,j(ui,j, vi)

)
≥ ρ2

n
− ρ
(

1

µ
+

1

nµ
‖vi − aj‖2

)
− 3

µ2
‖vi − aj‖2.
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Furthermore, from the construction of B in Theorem 4.2 we get that 0 < ‖vi − aj‖ ≤

‖vi‖+ ‖aj‖ ≤ r + max
1≤j≤n

‖aj‖ =: ξ, and therefore

det
(
Jγi,j(ui,j, vi)

)
≥ ρ2

n
− ρ

µ

(
1 +

1

n
ξ2

)
− 3

µ2
ξ2, (4.9)

which allows us to deduce from the aforementioned condition for convexity of γi,j(ui,j, vi)

that we do have convexity if ρ satisfies the estimate (4.7).
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Chapter 5 ALGORITHM DESIGN AND IMPLEMENTATION

Based on the developments presented in the previous sections and using the established

smooth DC structure of problem (4.5) with the subsequent ρ−parameterization of the ob-

jective function therein as G(U,V)−H(U,V), we are now ready to propose and implement

a new algorithm for solving this problem involving both DCA-2 and Nesterov’s smoothing.

5.1 THE SOLUTION ALGORITHM

To proceed, let us present the problem under consideration in the equivalent uncon-

strained format by using the infinite penalty via the indicator function:

minimize
ρ

2
‖(U,V)‖2 −H(U,V) + δ∆×B(U,V)

subject to (U,V) ∈ Rk×n × Rk×d,

(5.1)

where B, ∆, and ρ are taken from Section Chapter 4.

We first explicitly compute the gradient of the convex functionH(U,V) in (5.1). Denoting

[Y ,Z] := ∇H(U,V) = ∇
(
ρ

2
‖(U,V)‖2 − 1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2

+
µ

2

k∑
i=1

n∑
j=1

u2
i,j

[
d

(
aj − vi
µ

;B
)]2

− α
k∑
i=1

n∑
j=1

ui,j(1− ui,j)
)
,

we have

Y = ∇HU(U,V),

and Z = ∇HV(U,V),

respectively.

Thus for each i = 1, . . . , k and j = 1, . . . , n the (j, i)−entry of the matrix Y and the ith
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row of the matrix Z are given by

Yj,i := ρui,j −
ui,j
µ
‖aj − vi‖2 + µui,j

[
d

(
aj − vi
µ

;B
)]2

+ 2αui,j − α,

Zi := ρvi −
1

µ

n∑
j=1

u2
i,j(vi − aj)−

n∑
j=1

u2
i,j

[
aj − vi
µ

− P
(
aj − vi
µ

;B
)]
,

respectively.

We now describe the proposed algorithm for solving the DC program (5.1) and hence

the original problem (1.1) of multi-facility location. The symbols Y l−1
[j,:] and Z l−1

i in this

description represents the jth row of the matrix Y and the ith row of the matrix Z at the

lth iteration, respectively. Accordingly we use the symbols Ul
[:,j] and Vl

i. We also recall that

the Frobenius norm of the matrices in this algorithm is defined in (2.5).
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Algorithm 3: Solving Multi-facility Location Problems.

INPUT: X (the dataset), V0 (initial centers), ClusterNum (number of clusters), µ > 0,

β (scaling parameter) > 0, N ∈ N

INITIALIZATION: U0, ε > 0, µf (minimum threshold for µ) > 0, α > 0, ρ > 0,

tol (tolerance parameter) = 1

while tol > ε and µ > µf

for l = 1, 2, . . . , N

For 1 ≤ i ≤ k and 1 ≤ j ≤ n compute

Y l−1
j,i := ρul−1

i,j −
ul−1
i,j

µ

∥∥aj − vl−1
i

∥∥2
+ µul−1

i,j

[
d

(
aj − vl−1

i

µ
;B
)]2

+ 2αul−1
i,j − α,

Z l−1
i := ρvl−1

i − 1

µ

n∑
j=1

(ul−1
i,j )2(vl−1

i − aj)−
n∑
j=1

(ul−1
i,j )2

[
aj − vl−1

i

µ
− P

(
aj − vl−1

i

µ
;B
)]
.

For 1 ≤ i ≤ k and 1 ≤ j ≤ n compute

Ul
[:,j] := P

(Y l−1
[j,:]

ρ
; ∆

)
,

Vl
i := P

(
Z l−1
i

ρ
;Bi

)
=


Z l−1
i

ρ
if |Z l−1

i || ≤ ρr,

rZ l−1
i

||Z l−1
i ||

if ||Z l−1
i || > ρr.

end for

UPDATE:

tol :=
∥∥[Ul,Vl]− [Ul−1,Vl−1]

∥∥
F

µ := βµ.

end while

OUTPUT: [UN ,VN ].
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Next we employ Algorithm 3 to solve several multi-facility location problems of some

practical meaning. By trial and error we verify that the values chosen for µ determine the

performance of the algorithm for each data set. It can be seen that very small values of the

smoothing parameter µ may prevent the algorithm from clustering, and thus we gradually

decrease these values. This is done via multiplying µ by a constant β ∈ (0, 1) and stopping

when µ < µf . Note also that in the implementation of our algorithm we use the standard

approach of choosing U0 by computing the distance between the point in question and each

group center V0 and then by classifying this point to be in the group whose center is the

closest to it by assigning the value of 1, while otherwise we assign the value of 0.

We now present several numerical examples, where we find the optimal centers by using

Algorithm 3 via MATLAB software. We fix in what follows the values of µ = 0.5, β = 0.85,

ε = 10−6, µf = 10−6, α = 30, and ρ = 30 unless otherwise stated. The objective function

is the total distance from the centers to the assigned data points. Note that this choice of

the objective function seems to be natural from practical aspects in, e.g., airline and other

transportation industries, where the goal is to reach the destination via the best possible

route available. This reflects minimizing the transportation cost.

5.2 NUMERICAL ILLUSTRATIONS

In the following examples we implement the standard k-means algorithm in MATLAB

using the in-built function kmeans().

Example 5.1. Let us consider a data set with 14 entries in R2 given by

X =

0 2 7 2 3 6 5 8 8 9 1 7 0 0

3 2 1 4 3 2 3 1 3 2 1 4 4 1


T
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with the initial data defined by

V0 :=

 7.1429 2.2857

1.1429 2.5714

 is obtained from the k-means algorithm, and

ClusterNum := 2.

Employing Algorithm 3, we obtain the optimal centers as depicted in Table 1 and Figure 4.

Table 1: Comparison between Algorithm 3 and k-means
Method Optimal Center (VN) Cost Function

k-means
[

7.1429 2.2857
1.1429 2.5714

]
22.1637

Algorithm 3
[

7.2220 2.1802
1.1886 2.5069

]
22.1352
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Figure 4: MFLP with 14 demand points and 2 centers.

Table 1 shows that the proposed Algorithm 3 is marginally better for the given data in

comparison to the classical k-means approach in terms of the objective function.

The following example shows that the DCA and the k-means may result in both different

clusters and cluster centers.
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Example 5.2. Let X be 10 data points in R2 given by1.90 1.76 2.32 2.31 1.14 5.02 5.74 2.25 4.71 3.17

0.97 0.84 1.63 2.09 2.11 3.02 3.84 3.47 3.60 4.96


T

.

With the initial data defined by taking two random data points from the data set

V0 :=

 1.90 0.97

3.17 4.96

 chosen randomly, and

ClusterNum := 2.

We obtain the optimal centers as outlined in Table 2.

Table 2: Comparison between Algorithm 3 and k-means
Method Optimal Center (VN) Cost Function

k-means
[

3.3943 2.2843
2.1867 3.5133

]
16.5669

Algorithm 3
[

1.9995 1.4757
4.7185 3.5838

]
9.0994

Observe from Table 2 that the proposed Algorithm 3 is better for the given data in

comparison to the standard k-means algorithm. In addition, our approach gives a better

approximation for the optimal center as shown in Figure 5, which coincides with the results

of the Fermat-Torricelli problem [21]. It also yields a different set of clusters compared to

the standard k-means algorithm as shown in Figures 6 and 7, respectively.
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Figure 5: MFLP with 10 demand points and 2 centers.
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Figure 6: Clusters from Algorithm 3
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Figure 7: Clusters from k-means

Note that a drawback in employing the random approach to choose the initial cluster V0

in Example 5.2 is the need of having prior knowledge about the data. Typically, it may not

be plausible to extract such an information from large unpredictable real life datasets.

In the next example we choose the initial cluster by the process of random selection and

see its effect on the optimal centers. Then the results obtained in this way by Algorithm 3

are compared with those computed by the k-means approach.
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Example 5.3. Let X be 200 standard normally distributed random datapoints in R2, and

let the initial data be given by

V0 := randomly permuting and selecting 2 rows of X, and

ClusterNum := 2.

We obtain the optimal centers as outlined in Table 3.

Table 3: Comparison between Algorithm 3 and k-means
Method Optimal Center (VN) Cost Function

k-means
[

2.1016 1.2320
−1.3060 −1.0047

]
403.3966

Algorithm 3
[

1.4902 0.7406
−1.3464 −1.0716

]
401.7506
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Observe from Table 3 that the proposed Algorithm 3 is better for the given data in

comparison to the standard k-means approach. In addition, our approach gives a better

approximation for the optimal center as shown in Figure 8.
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Figure 8: MFLP with 200 demand points and 2 centers.

Although, it is noteworthy that a real-life data may not be as efficiently clustered as in

Example 5.3. Thus a suitable selection of the initial cluster V0 is vital for the convergence of

the DCA based algorithms. In the next Example 5.4 we select V0 in Algorithm 3 by using

the standard k-means method. The results achieved by our Algorithm 3 are then compared

with those obtained by using the k-means approach.

Example 5.4. Consider the dataset X consisting of the latitudes and longitudes of 50 most

populous cities in the USAi with

V0 :=


−80.9222 37.9882

−97.8273 35.3241

−118.3121 36.9535

 is obtained from the k-means algorithm, and

ClusterNum := 3.

iAvailable at https://en.wikipedia.org/wiki/List of United States cities by population
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By using Algorithm 3 we obtain the following optimal centers as given in Table 4.

Table 4: Comparison between Algorithm 3 (combined with k-means) and standard k-means
Method Optimal Center (VN) Cost Function

k-means

 −80.9222 37.9882
−97.8273 35.3241
−118.3121 36.9535

 288.8348

Algorithm 3 (combined with k-means)

 −81.0970 38.3092
−97.4138 35.3383
−119.3112 36.5410

 286.6523

We see that Algorithm 3 (combined with k-means) in which the initial cluster V0 is

selected by using k-means method performs better in comparison to the standard k-means

approach. Moreover, it gives us optimal centers as depicted in Figure 9.

-130 -120 -110 -100 -90 -80 -70

x-axis (Latitude)

15

20

25

30

35

40

45

50

55

y-
ax

is
 (

Lo
ng

itu
de

)

50 most populous US cities

Cluster 1
Cluster 2
Cluster 3
Centers from Algorithm 3 (combined with k-means)
Centers from k-means

Figure 9: MFLP with 50 demand points and 3 centers.
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In the next example we efficiently solve yet another multi-facility location problem by

using Algorithm 3.

Example 5.5. Consider the dataset X in R2 that consists of the latitudes and longitudes

of 988 US cities [22] with

V0 :=



−89.6747 41.1726

−88.4834 30.2475

−118.4471 35.2843

−75.7890 40.0329

−114.1897 43.0798


is obtained from the k-means algorithm, and

ClusterNum := 5.

The optimal centers illustrated in Figure 10 are given by

VN :=



−88.2248 40.7241

−88.0154 30.7041

−120.0735 33.1941

−74.5328 38.6996

−113.2341 42.3969


.

The total transportation cost in this problem is 5089.5150.
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Figure 10: MFLP with 988 demand points and 5 centers.

In the last example presented in this section we efficiently solve a higher dimensional

multi-facility location problem by using Algorithm 3 and compare its value of the cost func-

tion with the standard k-means algorithm.

Example 5.6. LetX in R13 be the wine dataset from the UCI Machine Learning Repositiory

[23] consisting of 178 demand points. We apply Algorithm 3 with

V0 is obtained from the k-means algorithm, and

ClusterNum := 3.

The respective total costs using Algorithm 3 and the k-means algorithm are obtained in

Table 5 showing that the former algorithm performs better than the latter.

Table 5: Cost comparison between Algorithm 3 (combined with k-means) and k-means
Method Cost Function
k-means 16556

Algorithm 3 (combined with k-means) 16460
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Chapter 6 CONCLUSION AND FUTURE WORK

This chapter summarizes the work we have done by highlighting the research conducted

on the topic: Solving and Applications of Multi-Facility Location Problems.

As detailed in Chapter 5, one of the most rewarding outcomes of the research was to be

able to present a novel general algorithm to solve a class of multi-facility location problems.

In particular, its implementation exhibits a better approximation compared to the classical k-

means approach. This is demonstrated by a series of examples dealing with two-dimensional

problems with non-negative weights, serving to cogently address the concept. This might

seem a bit restrictive and leads us to a natural desire to extend the present algorithm to

higher dimensions. Thus, the verification and implementation of the proposed algorithm for

real-life multi-facility location problems in higher dimensions with arbitrary weights is a

central direction of our future work.

Moreover, initialization and stopping criteria are fundamental aspects to any numerical

simulation. Therefore, developing approaches for a suitable selection of the initial cluster and

the stopping criterion different from the ones presented is a good practice and an important

area to explore.
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This thesis is devoted towards the study and solving of a new class of multi-facility lo-

cation problems. This class is of a great theoretical interest both in variational analysis and

optimization while being of high importance to a variety of practical applications. Optimiza-

tion problems of this type cannot be reduced to convex programming like, the much more

investigated facility location problems with only one center. In contrast, such classes of multi-

facility location problems can be described by using DC (difference of convex) programming,

which are significantly more involved from both theoretical and numerical viewpoints.

In this thesis, we present a new approach to solve multi-facility location problems, which

is based on mixed integer programming and algorithms for minimizing differences of convex

(DC) functions. We then computationally implement the proposed algorithm on both arti-

ficial and real data sets and provide many numerical examples. Finally, some directions and

insights for future work are detailed.
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