27,581 research outputs found

    Multi-Task Learning for Email Search Ranking with Auxiliary Query Clustering

    Full text link
    User information needs vary significantly across different tasks, and therefore their queries will also differ considerably in their expressiveness and semantics. Many studies have been proposed to model such query diversity by obtaining query types and building query-dependent ranking models. These studies typically require either a labeled query dataset or clicks from multiple users aggregated over the same document. These techniques, however, are not applicable when manual query labeling is not viable, and aggregated clicks are unavailable due to the private nature of the document collection, e.g., in email search scenarios. In this paper, we study how to obtain query type in an unsupervised fashion and how to incorporate this information into query-dependent ranking models. We first develop a hierarchical clustering algorithm based on truncated SVD and varimax rotation to obtain coarse-to-fine query types. Then, we study three query-dependent ranking models, including two neural models that leverage query type information as additional features, and one novel multi-task neural model that views query type as the label for the auxiliary query cluster prediction task. This multi-task model is trained to simultaneously rank documents and predict query types. Our experiments on tens of millions of real-world email search queries demonstrate that the proposed multi-task model can significantly outperform the baseline neural ranking models, which either do not incorporate query type information or just simply feed query type as an additional feature.Comment: CIKM 201

    Policy-Aware Unbiased Learning to Rank for Top-k Rankings

    Get PDF
    Counterfactual Learning to Rank (LTR) methods optimize ranking systems using logged user interactions that contain interaction biases. Existing methods are only unbiased if users are presented with all relevant items in every ranking. There is currently no existing counterfactual unbiased LTR method for top-k rankings. We introduce a novel policy-aware counterfactual estimator for LTR metrics that can account for the effect of a stochastic logging policy. We prove that the policy-aware estimator is unbiased if every relevant item has a non-zero probability to appear in the top-k ranking. Our experimental results show that the performance of our estimator is not affected by the size of k: for any k, the policy-aware estimator reaches the same retrieval performance while learning from top-k feedback as when learning from feedback on the full ranking. Lastly, we introduce novel extensions of traditional LTR methods to perform counterfactual LTR and to optimize top-k metrics. Together, our contributions introduce the first policy-aware unbiased LTR approach that learns from top-k feedback and optimizes top-k metrics. As a result, counterfactual LTR is now applicable to the very prevalent top-k ranking setting in search and recommendation.Comment: SIGIR 2020 full conference pape

    Learning to Attend, Copy, and Generate for Session-Based Query Suggestion

    Full text link
    Users try to articulate their complex information needs during search sessions by reformulating their queries. To make this process more effective, search engines provide related queries to help users in specifying the information need in their search process. In this paper, we propose a customized sequence-to-sequence model for session-based query suggestion. In our model, we employ a query-aware attention mechanism to capture the structure of the session context. is enables us to control the scope of the session from which we infer the suggested next query, which helps not only handle the noisy data but also automatically detect session boundaries. Furthermore, we observe that, based on the user query reformulation behavior, within a single session a large portion of query terms is retained from the previously submitted queries and consists of mostly infrequent or unseen terms that are usually not included in the vocabulary. We therefore empower the decoder of our model to access the source words from the session context during decoding by incorporating a copy mechanism. Moreover, we propose evaluation metrics to assess the quality of the generative models for query suggestion. We conduct an extensive set of experiments and analysis. e results suggest that our model outperforms the baselines both in terms of the generating queries and scoring candidate queries for the task of query suggestion.Comment: Accepted to be published at The 26th ACM International Conference on Information and Knowledge Management (CIKM2017

    The state-of-the-art in personalized recommender systems for social networking

    Get PDF
    With the explosion of Web 2.0 application such as blogs, social and professional networks, and various other types of social media, the rich online information and various new sources of knowledge flood users and hence pose a great challenge in terms of information overload. It is critical to use intelligent agent software systems to assist users in finding the right information from an abundance of Web data. Recommender systems can help users deal with information overload problem efficiently by suggesting items (e.g., information and products) that match users’ personal interests. The recommender technology has been successfully employed in many applications such as recommending films, music, books, etc. The purpose of this report is to give an overview of existing technologies for building personalized recommender systems in social networking environment, to propose a research direction for addressing user profiling and cold start problems by exploiting user-generated content newly available in Web 2.0
    corecore