5 research outputs found

    ICFHR 2020 Competition on Short answer ASsessment and Thai student SIGnature and Name COMponents Recognition and Verification (SASIGCOM 2020)

    Full text link
    This paper describes the results of the competition on Short answer ASsessment and Thai student SIGnature and Name COMponents Recognition and Verification (SASIGCOM 2020) in conjunction with the 17th International Conference on Frontiers in Handwriting Recognition (ICFHR 2020). The competition was aimed to automate the evaluation process short answer-based examination and record the development and gain attention to such system. The proposed competition contains three elements which are short answer assessment (recognition and marking the answers to short-answer questions derived from examination papers), student name components (first and last names) and signature verification and recognition. Signatures and name components data were collected from 100 volunteers. For the Thai signature dataset, there are 30 genuine signatures, 12 skilled and 12 simple forgeries for each writer. With Thai name components dataset, there are 30 genuine and 12 skilfully forged name components for each writer. There are 104 exam papers in the short answer assessment dataset, 52 of which were written with cursive handwriting; the rest of 52 papers were written with printed handwriting. The exam papers contain ten questions, and the answers to the questions were designed to be a few words per question. Three teams from distinguished labs submitted their systems. For short answer assessment, word spotting task was also performed. This paper analysed the results produced by their algorithms using a performance measure and defines a way forward for this subject of research. Both the datasets, along with some of the accompanying ground truth/baseline mask will be made freely available for research purposes via the TC10/TC11

    Wrist vascular biometric recognition using a portable contactless system

    Get PDF
    Human wrist vein biometric recognition is one of the least used vascular biometric modalities. Nevertheless, it has similar usability and is as safe as the two most common vascular variants in the commercial and research worlds: hand palm vein and finger vein modalities. Besides, the wrist vein variant, with wider veins, provides a clearer and better visualization and definition of the unique vein patterns. In this paper, a novel vein wrist non-contact system has been designed, implemented, and tested. For this purpose, a new contactless database has been collected with the software algorithm TGS-CVBR®. The database, called UC3M-CV1, consists of 1200 near-infrared contactless images of 100 different users, collected in two separate sessions, from the wrists of 50 subjects (25 females and 25 males). Environmental light conditions for the different subjects and sessions have been not controlled: different daytimes and different places (outdoor/indoor). The software algorithm created for the recognition task is PIS-CVBR®. The results obtained by combining these three elements, TGS-CVBR®, PIS-CVBR®, and UC3M-CV1 dataset, are compared using two other different wrist contact databases, PUT and UC3M (best value of Equal Error Rate (EER) = 0.08%), taken into account and measured the computing time, demonstrating the viability of obtaining a contactless real-time-processing wrist system.Publicad

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    A new wrist vein biometric system

    Full text link
    © 2014 IEEE. In this piece of work a wrist vein pattern recognition and verification system is proposed. Here the wrist vein images from the PUT database were used, which were acquired in visible spectrum. The vein image only highlights the vein pattern area so, segmentation was not required. Since the wrist's veins are not prominent, image enhancement was performed. An Adaptive Histogram Equalization and Discrete Meyer Wavelet were used to enhance the vessel patterns. For feature extraction, the vein pattern is characterized with Dense Local Binary Pattern (D-LBP). D-LBP patch descriptors of each training image are used to form a bag of features, which was used to produce the training model. Support Vector Machines (SVMs) were used for classification. An encouraging Equal Error Rate (EER) of 0.79% was achieved in our experiments
    corecore