15,031 research outputs found

    SOTXTSTREAM: Density-based self-organizing clustering of text streams

    Get PDF
    A streaming data clustering algorithm is presented building upon the density-based selforganizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets

    A Neural Model of Motion Processing and Visual Navigation by Cortical Area MST

    Full text link
    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually-guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals, and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves, and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.Defense Research Projects Agency (N00014-92-J-4015); Office of Naval Research (N00014-92-J-1309, N00014-95-1-0409, N00014-95-1-0657, N00014-91-J-4100, N0014-94-I-0597); Air Force Office of Scientific Research (F49620-92-J-0334)

    Visualizing practical knowledge: The Haughton-Mars Project

    Get PDF
    To improve how we envision knowledge, we must improve our ability to see knowledge in everyday life. That is, visualization is concerned not only with displaying facts and theories, but also with finding ways to express and relate tacit understanding. Such knowledge, although often referred to as "common," is not necessarily shared and may be distributed socially in choreographies for working together—in the manner that a chef and a maitre d’hîtel, who obviously possess very different skills, coordinate their work. Furthermore, non-verbal concepts cannot in principle be inventoried. Reifying practical knowledge is not a process of converting the implicit into the explicit, but pointing to what we know, showing its manifestations in our everyday life. To this end, I illustrate the study and reification of practical knowledge by examining the activities of a scientific expedition in the Canadian Arctic—a group of scientists preparing for a mission to Mar

    Statistical Complexity and Nontrivial Collective Behavior in Electroencephalografic Signals

    Full text link
    We calculate a measure of statistical complexity from the global dynamics of electroencephalographic (EEG) signals from healthy subjects and epileptic patients, and are able to stablish a criterion to characterize the collective behavior in both groups of individuals. It is found that the collective dynamics of EEG signals possess relative higher values of complexity for healthy subjects in comparison to that for epileptic patients. To interpret these results, we propose a model of a network of coupled chaotic maps where we calculate the complexity as a function of a parameter and relate this measure with the emergence of nontrivial collective behavior in the system. Our results show that the presence of nontrivial collective behavior is associated to high values of complexity; thus suggesting that similar dynamical collective process may take place in the human brain. Our findings also suggest that epilepsy is a degenerative illness related to the loss of complexity in the brain.Comment: 13 pages, 3 figure

    What is a complex innovation system?

    Get PDF
    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too

    Vector Associative Maps: Unsupervised Real-time Error-based Learning and Control of Movement Trajectories

    Full text link
    This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.National Science Foundation (IRI-87-16960, IRI-87-6960); Air Force Office of Scientific Research (90-0175); Defense Advanced Research Projects Agency (90-0083

    Learning Community Group Concept Mapping: Fall 2014 Outreach and Recruitment, Spring 2015 Case Management and Service Delivery. Final Reports

    Get PDF
    Beginning in 2014, the Federal Government provided funding to New York State as part of an initiative to improve services that lead to sustainable outcomes for youth receiving Supplemental Security Income (SSI) benefits. As part of the NYS PROMISE initiative, Concept Systems, Inc. worked with the Learning Community to develop learning needs frameworks using the Group Concept Mapping methodology (GCM). This GCM project gathers, aggregates, and integrates the specific knowledge and opinions of the Learning Community members and allows for their guidance and involvement in supporting NYS PROMISE as a viable community of practice. This work also increases the responsiveness of NYS PROMISE to the Learning Community members’ needs by inspiring discussion during the semi-annual in-person meetings. As of the end of year two, two GCM projects have been completed with the PROMISE Learning Community. These projects focused on Outreach and Recruitment and Case Management and Service Delivery. This report discusses the data collection method and participation in both GCM projects, as well as providing graphics, statistical reports, and a summary of the analysis. In this report we refer to the Fall 2014 project as Project 1, and the Spring 2015 project as Project 2

    Trajectories entropy in dynamical graphs with memory

    Get PDF
    In this paper we investigate the application of non-local graph entropy to evolving and dynamical graphs. The measure is based upon the notion of Markov diffusion on a graph, and relies on the entropy applied to trajectories originating at a specific node. In particular, we study the model of reinforcement-decay graph dynamics, which leads to scale free graphs. We find that the node entropy characterizes the structure of the network in the two parameter phase-space describing the dynamical evolution of the weighted graph. We then apply an adapted version of the entropy measure to purely memristive circuits. We provide evidence that meanwhile in the case of DC voltage the entropy based on the forward probability is enough to characterize the graph properties, in the case of AC voltage generators one needs to consider both forward and backward based transition probabilities. We provide also evidence that the entropy highlights the self-organizing properties of memristive circuits, which re-organizes itself to satisfy the symmetries of the underlying graph.Comment: 15 pages one column, 10 figures; new analysis and memristor models added. Text improve
    • 

    corecore