12,364 research outputs found

    Expectation Propagation for Poisson Data

    Get PDF
    The Poisson distribution arises naturally when dealing with data involving counts, and it has found many applications in inverse problems and imaging. In this work, we develop an approximate Bayesian inference technique based on expectation propagation for approximating the posterior distribution formed from the Poisson likelihood function and a Laplace type prior distribution, e.g., the anisotropic total variation prior. The approach iteratively yields a Gaussian approximation, and at each iteration, it updates the Gaussian approximation to one factor of the posterior distribution by moment matching. We derive explicit update formulas in terms of one-dimensional integrals, and also discuss stable and efficient quadrature rules for evaluating these integrals. The method is showcased on two-dimensional PET images.Comment: 25 pages, to be published at Inverse Problem

    Holographic particle localization under multiple scattering

    Full text link
    We introduce a novel framework that incorporates multiple scattering for large-scale 3D particle-localization using single-shot in-line holography. Traditional holographic techniques rely on single-scattering models which become inaccurate under high particle-density. We demonstrate that by exploiting multiple-scattering, localization is significantly improved. Both forward and back-scattering are computed by our method under a tractable recursive framework, in which each recursion estimates the next higher-order field within the volume. The inverse scattering is presented as a nonlinear optimization that promotes sparsity, and can be implemented efficiently. We experimentally reconstruct 100 million object voxels from a single 1-megapixel hologram. Our work promises utilization of multiple scattering for versatile large-scale applications
    • …
    corecore