43,187 research outputs found

    A 3D biomechanical vocal tract model to study speech production control: How to take into account the gravity?

    Get PDF
    This paper presents a modeling study of the way speech motor control can deal with gravity to achieve steady-state tongue positions. It is based on simulations carried out with the 3D biomechanical tongue model developed at ICP, which is now controlled with the Lambda model (Equilibrium-Point Hypothesis). The influence of short-delay orosensory feedback on posture stability is assessed by testing different muscle force/muscle length relationships (Invariant Characteristics). Muscle activation patterns necessary to maintain the tongue in a schwa position are proposed, and the relations of head position, tongue shape and muscle activations are analyzed

    Speech Development by Imitation

    Get PDF
    The Double Cone Model (DCM) is a model of how the brain transforms sensory input to motor commands through successive stages of data compression and expansion. We have tested a subset of the DCM on speech recognition, production and imitation. The experiments show that the DCM is a good candidate for an artificial speech processing system that can develop autonomously. We show that the DCM can learn a repertoire of speech sounds by listening to speech input. It is also able to link the individual elements of speech to sequences that can be recognized or reproduced, thus allowing the system to imitate spoken language

    Modeling the consequences of tongue surgery on tongue mobility

    Full text link
    This paper presents the current achievements of a long term project aiming at predicting and assessing the impact of tongue and mouth floor surgery on tongue mobility. The ultimate objective of this project is the design of a software with which surgeons should be able (1) to design a 3D biomechanical model of the tongue and of the mouth floor that matches the anatomical characteristics of each patient specific oral cavity, (2) to simulate the anatomical changes induced by the surgery and the possible reconstruction, and (3) to quantitatively predict and assess the consequences of these anatomical changes on tongue mobility and speech production after surgery

    Use of a biomechanical tongue model to predict the impact of tongue surgery on speech production

    Full text link
    This paper presents predictions of the consequences of tongue surgery on speech production. For this purpose, a 3D finite element model of the tongue is used that represents this articulator as a deformable structure in which tongue muscles anatomy is realistically described. Two examples of tongue surgery, which are common in the treatment of cancers of the oral cavity, are modelled, namely a hemiglossectomy and a large resection of the mouth floor. In both cases, three kinds of possible reconstruction are simulated, assuming flaps with different stiffness. Predictions are computed for the cardinal vowels /i, a, u/ in the absence of any compensatory strategy, i.e. with the same motor commands as the one associated with the production of these vowels in non-pathological conditions. The estimated vocal tract area functions and the corresponding formants are compared to the ones obtained under normal condition

    Postural destabilization induced by trunk extensor muscles fatigue is suppressed by use of a plantar pressure-based electro-tactile biofeedback

    Full text link
    Separate studies have reported that postural control during quiet standing could be (1) impaired with muscle fatigue localized at the lower back, and (2) improved through the use of plantar pressure-based electro-tactile biofeedback, under normal neuromuscular state. The aim of this experiment was to investigate whether this biofeedback could reduce postural destabilization induced by trunk extensor muscles. Ten healthy adults were asked to stand as immobile as possible in four experimental conditions: (1) no fatigue/no biofeedback, (2) no fatigue/biofeedback, (3) fatigue/no biofeedback and (4) fatigue/biofeedback. Muscular fatigue was achieved by performing trunk repetitive extensions until maximal exhaustion. The underlying principle of the biofeedback consisted of providing supplementary information related to foot sole pressure distribution through electro-tactile stimulation of the tongue. Centre of foot pressure (CoP) displacements were recorded using a force platform. Results showed (1) increased CoP displacements along the antero-posterior axis in the fatigue than no fatigue condition in the absence of biofeedback and (2) no significant difference between the no fatigue and fatigue conditions in the presence of biofeedback. This suggests that subjects were able to efficiently integrate an artificial plantar pressure information delivered through electro-tactile stimulation of the tongue that allowed them to suppress the destabilizing effect induced by trunk extensor muscles fatigue

    Neural Modeling and Imaging of the Cortical Interactions Underlying Syllable Production

    Full text link
    This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.National Institute on Deafness and Other Communication Disorders (R01 DC02852, RO1 DC01925

    Using Active Shape Modeling Based on MRI to Study Morphologic and Pitch-Related Functional Changes Affecting Vocal Structures and the Airway

    Get PDF
    Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.Peer reviewedPostprin
    • …
    corecore