11 research outputs found

    A New Survivable Mapping Problem in IP-over-WDM Networks

    Get PDF
    We introduce a new version of the widely studied survivable mapping problem in IP-over-WDM networks. The new problem allows augmenting the given logical topology and is described as follows: given a physical topology and a logical topology, compute a survivable logical topology that contains the given logical topology such that the minimal survivable mapping cost for the result logical topology is minimized. The problem is significant for two reasons: 1) If there does not exist a survivable mapping for the given logical topology, we can add logical links to the given logical topology to make it survivable; 2) Even if a survivable mapping for the given logical topology can be found, it is still possible to reduce the minimal survivable mapping cost by adding logical links selectively. We first prove the existence of a solution to the problem, then provide a straightforward Integer Linear Program (ILP) formulation for the problem. Moreover, we present a theoretical result that leads to a simple NP-hardness proof of the problem and an improved ILP formulation. Simulation results demonstrate the significance of both the new survivable mapping problem and the theoretical result

    Time-varying Resilient Virtual Networking Mapping for Multi-location Cloud Data Centers

    Get PDF
    Abstract In the currently dominant cloud computing paradigm, applications are being served in data centers (DCs), which are connected to high capacity optical networks. For bandwidth and consequently cost efficiency reasons, in both DC and optical network domains, virtualization of the physical hardware is exploited. In a DC, it means that multiple so-called virtual machines (VMs) are being hosted on the same physical server. Similarly, the network is partitioned into separate virtual networks, thus providing isolation between distinct virtual network operators (VNOs). Thus, the problem of virtual network mapping arises: how to decide which physical resources to allocate for a particular virtual network? In this thesis, we study that problem in the context of cloud computing with multiple DC sites. This introduces additional flexibility, due to the anycast routing principle: we have the freedom to decide at what particular DC location to serve a particular application. We can exploit this choice to minimize the required resources when solving the virtual network mapping problem. This thesis solves a resilient virtual network mapping problem that optimally decides on the mapping of both network and data center resources, considering time-varying traffic conditions and protecting against possible failures of both network and DC resources. We consider the so-called VNO resilience scheme: rerouting under failure conditions is provided in the virtual network layer. To minimize physical resource capacity requirements, we allow reuse of both network and DC resources: we can reuse the same resources for the rerouting under failure scenarios that are assumed not to occur simultaneously. Since we also protect against DC failures, we allocate backup DC resources, and account for synchronization between primary and backup DCs. To deal with the time variations in the volume and geographical pattern of the application traffic, we investigate the potential benefits (in terms iii of overall bandwidth requirements) of reconfiguring the virtual network mapping from one time period to the next. We provide models with good scalability, and investigate different scenarios to check whether it is worth to change routing for service requirement between time periods. The results come up with our experiments show that the benefits for rerouting is very limited. Keywords: Cloud Computing, Optical Networks, Virtualization, Anycast, VNO resilienc

    A New Survivable Mapping Problem in IP-over-WDM Networks

    No full text
    We introduce a new version of the widely studied survivable mapping problem in IP-over-WDM networks. The new problem allows augmenting the given logical topology and is described as follows: given a physical topology and a logical topology, compute a survivable logical topology that contains the given logical topology such that the minimal survivable mapping cost for the result logical topology is minimized. The problem is significant for two reasons: 1) If there does not exist a survivable mapping for the given logical topology, we can add logical links to the given logical topology to make it survivable; 2) Even if a survivable mapping for the given logical topology can be found, it is still possible to reduce the minimal survivable mapping cost by adding logical links selectively. We first prove the existence of a solution to the problem, then provide a straightforward Integer Linear Program (ILP) formulation for the problem. Moreover, we present a theoretical result that leads to a simple NP-hardness proof of the problem and an improved ILP formulation. Simulation results demonstrate the significance of both the new survivable mapping problem and the theoretical result.</p

    Crosslayer Survivability in Overlay-IP-WDM Networks

    Get PDF
    As the Internet moves towards a three-layer architecture consisting of overlay networks on top of the IP network layer on top of WDM-based physical networks, incorporating the interaction between and among network layers is crucial for efficient and effective implementation of survivability.This dissertation has four major foci as follows: First, a first-of-its-kind analysis of the impact of overlay network dependency on the lower layer network unveils that backhaul, a link loop that occurs at any two or more lower layers below the layer where traffic is present, could happen. This prompts our proposal of a crosslayer survivable mapping to highlight such challenges and to offer survivability in an efficient backhaul-free way. The results demonstrate that the impact of layer dependency is more severe than initially anticipated making it clear that independent single layer network design is inadequate to assure service guarantees and efficient capacity allocation. Second, a forbidden link matrix is proposed masking part of the network for use in situations where some physical links are reserved exclusively for a designated service, mainly for the context of providing multiple levels of differentiation on the network use and service guarantee. The masking effect is evaluated on metrics using practical approaches in a sample real-world network, showing that both efficiency and practicality can be achieved. Third, matrix-based optimization problem formulations of several crosslayer survivable mappings are presented; examples on the link availability mapping are particularly illustrated. Fourth, survivability strategies for two-layer backbone networks where traffic originates at each layer are investigated. Optimization-based formulations of performing recovery mechanisms at each layer for both layers of traffic are also presented. Numerical results indicate that, in such a wavelength-based optical network, implementing survivability of all traffic at the bottom layer can be a viable solution with significant advantages.This dissertation concludes by identifying a roadmap of potential future work for crosslayer survivability in layered network settings

    A New Survivable Mapping Problem in IP-over-WDM Networks

    No full text
    Abstract — We introduce a new version of the widely studied survivable mapping problem in IP-over-WDM networks. The new problem allows augmenting the given logical topology and is described as follows: given a physical topology and a logical topology, compute a survivable logical topology that contains the given logical topology such that the minimal survivable mapping cost for the result logical topology is minimized. The problem is significant for two reasons: 1) If there does not exist a survivable mapping for the given logical topology, we can add logical links to the given logical topology to make it survivable; 2) Even if a survivable mapping for the given logical topology can be found, it is still possible to reduce the minimal survivable mapping cost by adding logical links selectively. We first prove the existence of a solution to the problem, then provide a straightforward Integer Linear Program (ILP) formulation for the problem. Moreover, we present a theoretical result that leads to a simple NP-hardness proof of the problem and an improved ILP formulation. Simulation results demonstrate the significance of both the new survivable mapping problem and the theoretical result. Index Terms — Network survivability, survivable mapping, IPover-WDM I

    Scalable Column Generation Models and Algorithms for Optical Network Planning Problems

    Get PDF
    Column Generation Method has been proved to be a powerful tool to model and solve large scale optimization problems in various practical domains such as operation management, logistics and computer design. Such a decomposition approach has been also applied in telecommunication for several classes of classical network design and planning problems with a great success. In this thesis, we confirm that Column Generation Methodology is also a powerful tool in solving several contemporary network design problems that come from a rising worldwide demand of heavy traffic (100Gbps, 400Gbps, and 1Tbps) with emphasis on cost-effective and resilient networks. Such problems are very challenging in terms of complexity as well as solution quality. Research in this thesis attacks four challenging design problems in optical networks: design of p-cycles subject to wavelength continuity, design of dependent and independent p-cycles against multiple failures, design of survivable virtual topologies against multiple failures, design of a multirate optical network architecture. For each design problem, we develop a new mathematical models based on Column Generation Decomposition scheme. Numerical results show that Column Generation methodology is the right choice to deal with hard network design problems since it allows us to efficiently solve large scale network instances which have been puzzles for the current state of art. Additionally, the thesis reveals the great flexibility of Column Generation in formulating design problems that have quite different natures as well as requirements. Obtained results in this thesis show that, firstly, the design of p-cycles should be under a wavelength continuity assumption in order to save the converter cost since the difference between the capacity requirement under wavelength conversion vs. under wavelength continuity is insignificant. Secondly, such results which come from our new general design model for failure dependent p-cycles prove the fact that failure dependent p-cycles save significantly spare capacity than failure independent p-cycles. Thirdly, large instances can be quasi-optimally solved in case of survivable topology designs thanks to our new path-formulation model with online generation of augmenting paths. Lastly, the importance of high capacity devices such as 100Gbps transceiver and the impact of the restriction on number of regeneration sites to the provisioning cost of multirate WDM networks are revealed through our new hierarchical Column Generation model

    Resilient virtual topologies in optical networks and clouds

    Get PDF
    Optical networks play a crucial role in the development of Internet by providing a high speed infrastructure to cope with the rapid expansion of high bandwidth demand applications such as video, HDTV, teleconferencing, cloud computing, and so on. Network virtualization has been proposed as a key enabler for the next generation networks and the future Internet because it allows diversification the underlying architecture of Internet and lets multiple heterogeneous network architectures coexist. Physical network failures often come from natural disasters or human errors, and thus cannot be fully avoided. Today, with the increase of network traffic and the popularity of virtualization and cloud computing, due to the sharing nature of network virtualization, one single failure in the underlying physical network can affect thousands of customers and cost millions of dollars in revenue. Providing resilience for virtual network topology over optical network infrastructure thus becomes of prime importance. This thesis focuses on resilient virtual topologies in optical networks and cloud computing. We aim at finding more scalable models to solve the problem of designing survivable logical topologies for more realistic and meaningful network instances while meeting the requirements on bandwidth, security, as well as other quality of service such as recovery time. To address the scalability issue, we present a model based on a column generation decomposition. We apply the cutset theorem with a decomposition framework and lazy constraints. We are able to solve for much larger network instances than the ones in literature. We extend the model to address the survivability problem in the context of optical networks where the characteristics of optical networks such as lightpaths and wavelength continuity and traffic grooming are taken into account. We analyze and compare the bandwidth requirement between the two main approaches in providing resiliency for logical topologies. In the first approach, called optical protection, the resilient mechanism is provided by the optical layer. In the second one, called logical restoration, the resilient mechanism is done at the virtual layer. Next, we extend the survivability problem into the context of cloud computing where the major complexity arises from the anycast principle. We are able to solve the problem for much larger network instances than in the previous studies. Moreover, our model is more comprehensive that takes into account other QoS criteria, such that recovery time and delay requirement

    Resource Management in Softwarized Networks

    Get PDF
    Communication networks are undergoing a major transformation through softwarization, which is changing the way networks are designed, operated, and managed. Network Softwarization is an emerging paradigm where software controls the treatment of network flows, adds value to these flows by software processing, and orchestrates the on-demand creation of customized networks to meet the needs of customer applications. Software-Defined Networking (SDN), Network Function Virtualization (NFV), and Network Virtualization are three cornerstones of the overall transformation trend toward network softwarization. Together, they are empowering network operators to accelerate time-to-market for new services, diversify the supply chain for networking hardware and software, bringing the benefits of agility, economies of scale, and flexibility of cloud computing to networks. The enhanced programmability enabled by softwarization creates unique opportunities for adapting network resources in support of applications and users with diverse requirements. To effectively leverage the flexibility provided by softwarization and realize its full potential, it is of paramount importance to devise proper mechanisms for allocating resources to different applications and users and for monitoring their usage over time. The overarching goal of this dissertation is to advance state-of-the-art in how resources are allocated and monitored and build the foundation for effective resource management in softwarized networks. Specifically, we address four resource management challenges in three key enablers of network softwarization, namely SDN, NFV, and network virtualization. First, we challenge the current practice of realizing network services with monolithic software network functions and propose a microservice-based disaggregated architecture enabling finer-grained resource allocation and scaling. Then, we devise optimal solutions and scalable heuristics for establishing virtual networks with guaranteed bandwidth and guaranteed survivability against failure on multi-layer IP-over-Optical and single-layer IP substrate network, respectively. Finally, we propose adaptive sampling mechanisms for balancing the overhead of softwarized network monitoring and the accuracy of the network view constructed from monitoring data
    corecore