106,283 research outputs found

    An improvement of sufficient condition for kk-leaf-connected graphs

    Full text link
    For integer k≥2,k\geq2, a graph GG is called kk-leaf-connected if ∣V(G)∣≥k+1|V(G)|\geq k+1 and given any subset S⊆V(G)S\subseteq V(G) with ∣S∣=k,|S|=k, GG always has a spanning tree TT such that SS is precisely the set of leaves of T.T. Thus a graph is 22-leaf-connected if and only if it is Hamilton-connected. In this paper, we present a best possible condition based upon the size to guarantee a graph to be kk-leaf-connected, which not only improves the results of Gurgel and Wakabayashi [On kk-leaf-connected graphs, J. Combin. Theory Ser. B 41 (1986) 1-16] and Ao, Liu, Yuan and Li [Improved sufficient conditions for kk-leaf-connected graphs, Discrete Appl. Math. 314 (2022) 17-30], but also extends the result of Xu, Zhai and Wang [An improvement of spectral conditions for Hamilton-connected graphs, Linear Multilinear Algebra, 2021]. Our key approach is showing that an (n+k−1)(n+k-1)-closed non-kk-leaf-connected graph must contain a large clique if its size is large enough. As applications, sufficient conditions for a graph to be kk-leaf-connected in terms of the (signless Laplacian) spectral radius of GG or its complement are also presented.Comment: 15 pages, 2 figure

    Shilla distance-regular graphs

    Full text link
    A Shilla distance-regular graph G (say with valency k) is a distance-regular graph with diameter 3 such that its second largest eigenvalue equals to a3. We will show that a3 divides k for a Shilla distance-regular graph G, and for G we define b=b(G):=k/a3. In this paper we will show that there are finitely many Shilla distance-regular graphs G with fixed b(G)>=2. Also, we will classify Shilla distance-regular graphs with b(G)=2 and b(G)=3. Furthermore, we will give a new existence condition for distance-regular graphs, in general.Comment: 14 page

    A sufficient condition guaranteeing large cycles in graphs

    Get PDF
    AbstractWe generalize Bedrossian-Chen-Schelp's condition (1993) for the existence of large cycles in graphs, and give infinitely many examples of graphs which fulfill the new condition for hamiltonicity, while the related condition by Bedrossian, Chen, and Schelp is not fulfilled

    A bandwidth theorem for approximate decompositions

    Get PDF
    We provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. In general, this degree condition is best possible. Here a graph is separable if it has a sublinear separator whose removal results in a set of components of sublinear size. Equivalently, the separability condition can be replaced by that of having small bandwidth. Thus our result can be viewed as a version of the bandwidth theorem of B\"ottcher, Schacht and Taraz in the setting of approximate decompositions. More precisely, let δk\delta_k be the infimum over all δ≥1/2\delta\ge 1/2 ensuring an approximate KkK_k-decomposition of any sufficiently large regular nn-vertex graph GG of degree at least δn\delta n. Now suppose that GG is an nn-vertex graph which is close to rr-regular for some r≥(δk+o(1))nr \ge (\delta_k+o(1))n and suppose that H1,…,HtH_1,\dots,H_t is a sequence of bounded degree nn-vertex kk-chromatic separable graphs with ∑ie(Hi)≤(1−o(1))e(G)\sum_i e(H_i) \le (1-o(1))e(G). We show that there is an edge-disjoint packing of H1,…,HtH_1,\dots,H_t into GG. If the HiH_i are bipartite, then r≥(1/2+o(1))nr\geq (1/2+o(1))n is sufficient. In particular, this yields an approximate version of the tree packing conjecture in the setting of regular host graphs GG of high degree. Similarly, our result implies approximate versions of the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree.Comment: Final version, to appear in the Proceedings of the London Mathematical Societ
    • …
    corecore