1,787 research outputs found

    More "normal" than normal: scaling distributions and complex systems

    Get PDF
    One feature of many naturally occurring or engineered complex systems is tremendous variability in event sizes. To account for it, the behavior of these systems is often described using power law relationships or scaling distributions, which tend to be viewed as "exotic" because of their unusual properties (e.g., infinite moments). An alternate view is based on mathematical, statistical, and data-analytic arguments and suggests that scaling distributions should be viewed as "more normal than normal". In support of this latter view that has been advocated by Mandelbrot for the last 40 years, we review in this paper some relevant results from probability theory and illustrate a powerful statistical approach for deciding whether the variability associated with observed event sizes is consistent with an underlying Gaussian-type (finite variance) or scaling-type (infinite variance) distribution. We contrast this approach with traditional model fitting techniques and discuss its implications for future modeling of complex systems

    A framework for evaluating statistical dependencies and rank correlations in power law graphs

    Get PDF
    We analyze dependencies in power law graph data (Web sample, Wikipedia sample and a preferential attachment graph) using statistical inference for multivariate regular variation. To the best of our knowledge, this is the first attempt to apply the well developed theory of regular variation to graph data. The new insights this yields are striking: the three above-mentioned data sets are shown to have a totally different dependence structure between different graph parameters, such as in-degree and PageRank. Based on the proposed methodology, we suggest a new measure for rank correlations. Unlike most known methods, this measure is especially sensitive to rank permutations for topranked nodes. Using this method, we demonstrate that the PageRank ranking is not sensitive to moderate changes in the damping factor

    Monte Carlo-based tail exponent estimator

    Full text link
    In this paper we propose a new approach to estimation of the tail exponent in financial stock markets. We begin the study with the finite sample behavior of the Hill estimator under {\alpha}-stable distributions. Using large Monte Carlo simulations, we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation for the tail exponent. Our proposed method is not sensitive to the choice of tail size and works well also on small data samples. The new estimator also gives unbiased results with symmetrical confidence intervals. Finally, we demonstrate the power of our estimator on the international world stock market indices. On the two separate periods of 2002-2005 and 2006-2009, we estimate the tail exponent

    Non-regular Frameworks and the Mean-of-Order p Extreme Value Index Estimation

    Get PDF
    Most of the estimators of parameters of rare and large events, among which we dis- tinguish the extreme value index (EVI) for maxima, one of the primary parameters in statistical extreme value theory, are averages of statistics, based on the k upper observations. They can thus be regarded as the logarithm of the geometric mean, i.e. the logarithm of the power mean of order p = 0 of a certain set of statistics. Only for heavy tails, i.e. a positive EVI, quite common in many areas of application, and trying to improve the performance of the classical Hill EVI-estimators, instead of the aforementioned geometric mean, we can more generally consider the power mean of order-p (MOp) and build associated MOp EVI-estimators. The normal asymptotic behaviour of MOp EVI-estimators has already been obtained for p < 1/(2ξ), with consistency achieved for p < 1/ξ , where ξ denotes the EVI. We shall now consider the non-regular case, p ≥ 1/(2ξ ), a situation in which either normal or non-normal sum- stable laws can be obtained, together with the possibility of an ‘almost degenerate’ EVI-estimation

    Extrapolation of Stationary Random Fields

    Full text link
    We introduce basic statistical methods for the extrapolation of stationary random fields. For square integrable fields, we set out basics of the kriging extrapolation techniques. For (non--Gaussian) stable fields, which are known to be heavy tailed, we describe further extrapolation methods and discuss their properties. Two of them can be seen as direct generalizations of kriging.Comment: 52 pages, 25 figures. This is a review article, though Section 4 of the article contains new results on the weak consistency of the extrapolation methods as well as new extrapolation methods for α\alpha-stable fields with $0<\alpha\leq 1

    Asymptotic and bootstrap inference for inequality and poverty measures

    Get PDF
    A random sample drawn from a population would appear to offer an ideal opportunity to use the bootstrap in order to perform accurate inference, since the observations of the sample are IID. In this paper, Monte Carlo results suggest that bootstrapping a commonly used index of inequality leads to inference that is not accurate even in very large samples, although inference with poverty indices is satisfactory. We find that the major cause is the extreme sensitivity of many inequality indices to the exact nature of the upper tail of the income distribution. This leads us to study two non-standard bootstraps, the m out of n bootstrap, which is valid in some situations where the standard bootstrap fails, and a bootstrap in which the upper tail is modelled parametrically. Monte Carlo results suggest that accurate inference can be achieved with this last method in moderately large samples.Income distribution; Poverty; Bootstrap inference

    Box-Cox Transformations and Bias Reduction in Extreme Value Theory

    Get PDF
    The Box-Cox transformations are used to make the data more suitable for statistical analysis. We know from the literature that this transformation of the data can increase the rate of convergence of the tail of the distribution to the generalized extreme value distribution, and as a byproduct, the bias of the estimation procedure is reduced. The reduction of bias of the Hill estimator has been widely addressed in the literature of extreme value theory. Several techniques have been used to achieve such reduction of bias, either by removing the main component of the bias of the Hill estimator of the extreme value index (EVI) or by constructing new estimators based on generalized means or norms that generalize the Hill estimator. We are going to study the Box-Cox Hill estimator introduced by Teugels and Vanroelen, in 2004, proving the consistency and asymptotic normality of the estimator and addressing the choice and estimation of the power and shift parameters of the Box-Cox transformation for the EVI estimation. The performance of the estimators under study will be illustrated for finite samples through small-scale Monte Carlo simulation studies

    Spatial Sign Correlation

    Get PDF
    A new robust correlation estimator based on the spatial sign covariance matrix (SSCM) is proposed. We derive its asymptotic distribution and influence function at elliptical distributions. Finite sample and robustness properties are studied and compared to other robust correlation estimators by means of numerical simulations.Comment: 20 pages, 7 figures, 2 table
    corecore