8,609 research outputs found

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Optimal and Efficient Decoding of Concatenated Quantum Block Codes

    Get PDF
    We consider the problem of optimally decoding a quantum error correction code -- that is to find the optimal recovery procedure given the outcomes of partial "check" measurements on the system. In general, this problem is NP-hard. However, we demonstrate that for concatenated block codes, the optimal decoding can be efficiently computed using a message passing algorithm. We compare the performance of the message passing algorithm to that of the widespread blockwise hard decoding technique. Our Monte Carlo results using the 5 qubit and Steane's code on a depolarizing channel demonstrate significant advantages of the message passing algorithms in two respects. 1) Optimal decoding increases by as much as 94% the error threshold below which the error correction procedure can be used to reliably send information over a noisy channel. 2) For noise levels below these thresholds, the probability of error after optimal decoding is suppressed at a significantly higher rate, leading to a substantial reduction of the error correction overhead.Comment: Published versio

    Approximate quantum error correction for generalized amplitude damping errors

    Full text link
    We present analytic estimates of the performances of various approximate quantum error correction schemes for the generalized amplitude damping (GAD) qubit channel. Specifically, we consider both stabilizer and nonadditive quantum codes. The performance of such error-correcting schemes is quantified by means of the entanglement fidelity as a function of the damping probability and the non-zero environmental temperature. The recovery scheme employed throughout our work applies, in principle, to arbitrary quantum codes and is the analogue of the perfect Knill-Laflamme recovery scheme adapted to the approximate quantum error correction framework for the GAD error model. We also analytically recover and/or clarify some previously known numerical results in the limiting case of vanishing temperature of the environment, the well-known traditional amplitude damping channel. In addition, our study suggests that degenerate stabilizer codes and self-complementary nonadditive codes are especially suitable for the error correction of the GAD noise model. Finally, comparing the properly normalized entanglement fidelities of the best performant stabilizer and nonadditive codes characterized by the same length, we show that nonadditive codes outperform stabilizer codes not only in terms of encoded dimension but also in terms of entanglement fidelity.Comment: 44 pages, 8 figures, improved v

    Repeat-Accumulate Codes for Reconciliation in Continuous Variable Quantum Key Distribution

    Full text link
    This paper investigates the design of low-complexity error correction codes for the verification step in continuous variable quantum key distribution (CVQKD) systems. We design new coding schemes based on quasi-cyclic repeat-accumulate codes which demonstrate good performances for CVQKD reconciliation

    Concatenated Quantum Codes

    Get PDF
    One of the main problems for the future of practical quantum computing is to stabilize the computation against unwanted interactions with the environment and imperfections in the applied operations. Existing proposals for quantum memories and quantum channels require gates with asymptotically zero error to store or transmit an input quantum state for arbitrarily long times or distances with fixed error. In this report a method is given which has the property that to store or transmit a qubit with maximum error ϵ\epsilon requires gates with error at most cϵc\epsilon and storage or channel elements with error at most ϵ\epsilon, independent of how long we wish to store the state or how far we wish to transmit it. The method relies on using concatenated quantum codes with hierarchically implemented recovery operations. The overhead of the method is polynomial in the time of storage or the distance of the transmission. Rigorous and heuristic lower bounds for the constant cc are given.Comment: 16 pages in PostScirpt, the paper is also avalaible at http://qso.lanl.gov/qc
    corecore