82,816 research outputs found

    SPP Secure Payment Protocol: Protocol Analysis, Implementation and Extensions

    Get PDF
    Internet commerce continues to grow rapidly. Over 60% of US households use the internet to shop online. A secure payment protocol is required to support this rapid growth. A new payment protocol was recently invented at IBM. We refer to the protocol as SPP or Secure Payment Protocol. This thesis presents a protocol analysis of SPP. It is essential that a thorough security analysis be done on any new payment protocol so that we can better understand its security properties. We first develop a method for analyzing payment protocols. This method includes a list of desirable security features and a list of proofs that should be satisfied. We then present the results of the analysis. These results validate that the protocol does contain many security features and properties. They also help understand the security properties and identify areas where the protocol can be further secured. This led us to extend the design of the protocol to enhance its security. This thesis also presents a prototype implementation of SPP. Three software components were implemented. They are the Electronic Wallet component, the merchant software component and the Trusted Third Party component. The architecture and technologies that are required for implementation are discussed. The prototype is then used in performance measurement experiments. Results on system performance as a function of key size are presented. Finally, this thesis presents an extension of SPP to support a two buyer scenario. In this scenario one buyer makes an order while another buyer makes the payment. This scenario enables additional commerce services

    An Investigation of Security in Near Field Communication Systems

    Get PDF
    Increasingly, goods and services are purchased over the Internet without any form of physical currency. This practice, often called e-commerce, offers sellers and buyers a convenient way to trade globally as no physical currency must change hands and buyers from anywhere in the world can browse online store fronts from around the globe. Nevertheless, many transactions still require a physical presence. For these sorts of transactions, a new technology called Near Field Communication has emerged to provide buyers with some of the conveniences of e-commerce while still allowing them to purchase goods locally. Near Field Communication (NFC), an evolution of Radio-Frequency Identification (RFID), allows one electronic device to transmit short messages to another nearby device. A buyer can store his or her payment information on a tag and a cashier can retrieve that information with an appropriate reader. Advanced devices can store payment information for multiple credit and debit cards as well as gift cards and other credentials. By consolidating all of these payment forms into a single device, the buyer has fewer objects to carry with her. Further, proper implementation of such a device can offer increased security over plastic cards in the form of advanced encryption. Using a testing platform consisting of commercial, off-the-shelf components, this dissertation investigates the security of the NFC physical-layer protocols as well as the primary NFC security protocol, NFC-SEC. In addition, it analyzes a situation in which the NFC protocols appear to break, potentially compromising sensitive data. Finally, this dissertation provides a proof of security for the NFC-SEC-1 variation of NFC-SEC

    webXice: an Infrastructure for Information Commerce on the WWW

    Get PDF
    Systems for information commerce on the WWW have to support flexible business models if they should be able to cover a wide range of requirements imposed by the different types of information businesses. This leads to non-trivial functional and security requirements both on the provider and consumer side, for which we introduce an architecture and a system implementation, webXice. We focus on the question, how participants with minimal technological requisites, i.e. solely standard Web browsers available, can be technologically enabled to articipate in the information commerce at a system level, while not sacrificing the functionality and security required by an autonomous participant in an information commerce scenario. In particular, we propose an implementation strategy to efficiently support persistent message logging for light-weight clients, that enables clients to collect and manage non-reputiable messages as proofs. We believe that the capability to support minimal system platforms is a necessary precondition for the wide-spread use of any information commerce infrastructure
    corecore