22,463 research outputs found

    Fast Neural Network Predictions from Constrained Aerodynamics Datasets

    Full text link
    Incorporating computational fluid dynamics in the design process of jets, spacecraft, or gas turbine engines is often challenged by the required computational resources and simulation time, which depend on the chosen physics-based computational models and grid resolutions. An ongoing problem in the field is how to simulate these systems faster but with sufficient accuracy. While many approaches involve simplified models of the underlying physics, others are model-free and make predictions based only on existing simulation data. We present a novel model-free approach in which we reformulate the simulation problem to effectively increase the size of constrained pre-computed datasets and introduce a novel neural network architecture (called a cluster network) with an inductive bias well-suited to highly nonlinear computational fluid dynamics solutions. Compared to the state-of-the-art in model-based approximations, we show that our approach is nearly as accurate, an order of magnitude faster, and easier to apply. Furthermore, we show that our method outperforms other model-free approaches

    Reduced Order Modeling for Nonlinear PDE-constrained Optimization using Neural Networks

    Full text link
    Nonlinear model predictive control (NMPC) often requires real-time solution to optimization problems. However, in cases where the mathematical model is of high dimension in the solution space, e.g. for solution of partial differential equations (PDEs), black-box optimizers are rarely sufficient to get the required online computational speed. In such cases one must resort to customized solvers. This paper present a new solver for nonlinear time-dependent PDE-constrained optimization problems. It is composed of a sequential quadratic programming (SQP) scheme to solve the PDE-constrained problem in an offline phase, a proper orthogonal decomposition (POD) approach to identify a lower dimensional solution space, and a neural network (NN) for fast online evaluations. The proposed method is showcased on a regularized least-square optimal control problem for the viscous Burgers' equation. It is concluded that significant online speed-up is achieved, compared to conventional methods using SQP and finite elements, at a cost of a prolonged offline phase and reduced accuracy.Comment: Accepted for publishing at the 58th IEEE Conference on Decision and Control, Nice, France, 11-13 December, https://cdc2019.ieeecss.org

    Reduced order modeling of fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and partitioning

    Full text link
    In this paper, we put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements. We build on the fact that in a realistic application, there are uncertainties in initial conditions, boundary conditions, model parameters, and/or field measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities due to the modal truncation, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM-Nudge approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate the idea with the viscous Burgers problem, as a benchmark test bed with quadratic nonlinearity and Laplacian dissipation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-Nudge behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity. This first step in our assessment of the proposed model shows that the LSTM nudging could represent a viable realtime predictive tool in emerging digital twin systems

    Model Reduction and Neural Networks for Parametric PDEs

    Get PDF
    We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature

    Tomographic Image Reconstruction of Fan-Beam Projections with Equidistant Detectors using Partially Connected Neural Networks

    Get PDF
    We present a neural network approach for tomographic imaging problem using interpolation methods and fan-beam projections. This approach uses a partially connected neural network especially assembled for solving tomographic\ud reconstruction with no need of training. We extended the calculations to perform reconstruction with interpolation and to allow tomography of fan-beam geometry. The main goal is to aggregate speed while maintaining or improving the quality of the tomographic reconstruction process
    • …
    corecore