93,593 research outputs found

    Multi-resolution two-sample comparison through the divide-merge Markov tree

    Full text link
    We introduce a probabilistic framework for two-sample comparison based on a nonparametric process taking the form of a Markov model that transitions between a "divide" and a "merge" state on a multi-resolution partition tree of the sample space. Multi-scale two-sample comparison is achieved through inferring the underlying state of the process along the partition tree. The Markov design allows the process to incorporate spatial clustering of differential structures, which is commonly observed in two-sample problems but ignored by existing methods. Inference is carried out under the Bayesian paradigm through recursive propagation algorithms. We demonstrate the work of our method through simulated data and a real flow cytometry data set, and show that it substantially outperforms other state-of-the-art two-sample tests in several settings.Comment: Corrected typos. Added Software sectio

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Parallel Weighted Random Sampling

    Get PDF
    Data structures for efficient sampling from a set of weighted items are an important building block of many applications. However, few parallel solutions are known. We close many of these gaps both for shared-memory and distributed-memory machines. We give efficient, fast, and practicable algorithms for sampling single items, k items with/without replacement, permutations, subsets, and reservoirs. We also give improved sequential algorithms for alias table construction and for sampling with replacement. Experiments on shared-memory parallel machines with up to 158 threads show near linear speedups both for construction and queries
    • …
    corecore