17,262 research outputs found

    Optimal Control for LQG Systems on Graphs---Part I: Structural Results

    Full text link
    In this two-part paper, we identify a broad class of decentralized output-feedback LQG systems for which the optimal control strategies have a simple intuitive estimation structure and can be computed efficiently. Roughly, we consider the class of systems for which the coupling of dynamics among subsystems and the inter-controller communication is characterized by the same directed graph. Furthermore, this graph is assumed to be a multitree, that is, its transitive reduction can have at most one directed path connecting each pair of nodes. In this first part, we derive sufficient statistics that may be used to aggregate each controller's growing available information. Each controller must estimate the states of the subsystems that it affects (its descendants) as well as the subsystems that it observes (its ancestors). The optimal control action for a controller is a linear function of the estimate it computes as well as the estimates computed by all of its ancestors. Moreover, these state estimates may be updated recursively, much like a Kalman filter

    The Fundamental Theorems of Welfare Economics, DSGE and the Theory of Policy - Computable & Constructive Foundations

    Get PDF
    The genesis and the path towards what has come to be called the DSGE model is traced, from its origins in the Arrow-Debreu General Equilibrium model (ADGE), via Scarf's Computable General Equilibrium model (CGE) and its applied version as Applied Computable General Equilibrium model (ACGE), to its ostensible dynamization as a Recursive Competitive Equilibrium (RCE). It is shown that these transformations of the ADGE - including the fountainhead - are computably and constructively untenable. The policy implications of these (negative) results, via the Fundamental Theorems of Welfare Economics in particular, and against the backdrop of the mathematical theory of economic policy in general, are also discussed (again from computable and constructive points of view). Suggestions for going 'beyond DSGE' are, then, outlined on the basis of a framework that is underpinned - from the outset - by computability and constructivity considerationsComputable General Equilibrium, Dynamic Stochastic General Equilibrium, Computability, Constructivity, Fundamental Theorems of Welfare Economics, Theory of Policy, Coupled Nonlinear Dynamic

    Structure in the Value Function of Two-Player Zero-Sum Games of Incomplete Information

    Get PDF
    Zero-sum stochastic games provide a rich model for competitive decision making. However, under general forms of state uncertainty as considered in the Partially Observable Stochastic Game (POSG), such decision making problems are still not very well understood. This paper makes a contribution to the theory of zero-sum POSGs by characterizing structure in their value function. In particular, we introduce a new formulation of the value function for zs-POSGs as a function of the "plan-time sufficient statistics" (roughly speaking the information distribution in the POSG), which has the potential to enable generalization over such information distributions. We further delineate this generalization capability by proving a structural result on the shape of value function: it exhibits concavity and convexity with respect to appropriately chosen marginals of the statistic space. This result is a key pre-cursor for developing solution methods that may be able to exploit such structure. Finally, we show how these results allow us to reduce a zs-POSG to a "centralized" model with shared observations, thereby transferring results for the latter, narrower class, to games with individual (private) observations
    • …
    corecore