425 research outputs found

    Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation

    Full text link
    An originally chaotic system can be controlled into various periodic dynamics. When it is implemented into a legged robot's locomotion control as a central pattern generator (CPG), sophisticated gait patterns arise so that the robot can perform various walking behaviors. However, such a single chaotic CPG controller has difficulties dealing with leg malfunction. Specifically, in the scenarios presented here, its movement permanently deviates from the desired trajectory. To address this problem, we extend the single chaotic CPG to multiple CPGs with learning. The learning mechanism is based on a simulated annealing algorithm. In a normal situation, the CPGs synchronize and their dynamics are identical. With leg malfunction or disability, the CPGs lose synchronization leading to independent dynamics. In this case, the learning mechanism is applied to automatically adjust the remaining legs' oscillation frequencies so that the robot adapts its locomotion to deal with the malfunction. As a consequence, the trajectory produced by the multiple chaotic CPGs resembles the original trajectory far better than the one produced by only a single CPG. The performance of the system is evaluated first in a physical simulation of a quadruped as well as a hexapod robot and finally in a real six-legged walking machine called AMOSII. The experimental results presented here reveal that using multiple CPGs with learning is an effective approach for adaptive locomotion generation where, for instance, different body parts have to perform independent movements for malfunction compensation.Comment: 48 pages, 16 figures, Information Sciences 201

    Analytic Model for Quadruped Locomotion Task-Space Planning

    Full text link
    Despite the extensive presence of the legged locomotion in animals, it is extremely challenging to be reproduced with robots. Legged locomotion is an dynamic task which benefits from a planning that takes advantage of the gravitational pull on the system. However, the computational cost of such optimization rapidly increases with the complexity of kinematic structures, rendering impossible real-time deployment in unstructured environments. This paper proposes a simplified method that can generate desired centre of mass and feet trajectory for quadrupeds. The model describes a quadruped as two bipeds connected via their centres of mass, and it is based on the extension of an algebraic bipedal model that uses the topology of the gravitational attractor to describe bipedal locomotion strategies. The results show that the model generates trajectories that agrees with previous studies. The model will be deployed in the future as seed solution for whole-body trajectory optimization in the attempt to reduce the computational cost and obtain real-time planning of complex action in challenging environments.Comment: Accepted to be Published in 2019, 41th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin German

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    Body randomization reduces the sim-to-real gap for compliant quadruped locomotion

    Get PDF
    Designing controllers for compliant, underactuated robots is challenging and usually requires a learning procedure. Learning robotic control in simulated environments can speed up the process whilst lowering risk of physical damage. Since perfect simulations are unfeasible, several techniques are used to improve transfer to the real world. Here, we investigate the impact of randomizing body parameters during learning of CPG controllers in simulation. The controllers are evaluated on our physical quadruped robot. We find that body randomization in simulation increases chances of finding gaits that function well on the real robot

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system

    Intelligent approaches in locomotion - a review

    Get PDF

    Spiking Central Pattern Generators through Reverse Engineering of Locomotion Patterns

    Get PDF
    In robotics, there have been proposed methods for locomotion of nonwheeled robots based on artificial neural networks; those built with plausible neurons are called spiking central pattern generators (SCPGs). In this chapter, we present a generalization of reported deterministic and stochastic reverse engineering methods for automatically designing SCPG for legged robots locomotion systems; such methods create a spiking neural network capable of endogenously and periodically replicating one or several rhythmic signal sets, when a spiking neuron model and one or more locomotion gaits are given as inputs. Designed SCPGs have been implemented in different robotic controllers for a variety of robotic platforms. Finally, some aspects to improve and/or complement these SCPG-based locomotion systems are pointed out

    Fast Damage Recovery in Robotics with the T-Resilience Algorithm

    Full text link
    Damage recovery is critical for autonomous robots that need to operate for a long time without assistance. Most current methods are complex and costly because they require anticipating each potential damage in order to have a contingency plan ready. As an alternative, we introduce the T-resilience algorithm, a new algorithm that allows robots to quickly and autonomously discover compensatory behaviors in unanticipated situations. This algorithm equips the robot with a self-model and discovers new behaviors by learning to avoid those that perform differently in the self-model and in reality. Our algorithm thus does not identify the damaged parts but it implicitly searches for efficient behaviors that do not use them. We evaluate the T-Resilience algorithm on a hexapod robot that needs to adapt to leg removal, broken legs and motor failures; we compare it to stochastic local search, policy gradient and the self-modeling algorithm proposed by Bongard et al. The behavior of the robot is assessed on-board thanks to a RGB-D sensor and a SLAM algorithm. Using only 25 tests on the robot and an overall running time of 20 minutes, T-Resilience consistently leads to substantially better results than the other approaches

    CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

    Full text link
    In this letter, we present a method for integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework to produce robust and omnidirectional quadruped locomotion. The agent learns to directly modulate the intrinsic oscillator setpoints (amplitude and frequency) and coordinate rhythmic behavior among different oscillators. This approach also allows the use of DRL to explore questions related to neuroscience, namely the role of descending pathways, interoscillator couplings, and sensory feedback in gait generation. We train our policies in simulation and perform a sim-to-real transfer to the Unitree A1 quadruped, where we observe robust behavior to disturbances unseen during training, most notably to a dynamically added 13.75 kg load representing 115% of the nominal quadruped mass. We test several different observation spaces based on proprioceptive sensing and show that our framework is deployable with no domain randomization and very little feedback, where along with the oscillator states, it is possible to provide only contact booleans in the observation space. Video results can be found at https://youtu.be/xqXHLzLsEV4.Comment: Accepted for IEEE Robotics and Automation Letters, September 202
    • 

    corecore