4,383 research outputs found

    A new method for the determination of the locking range of oscillators

    Get PDF
    A time-domain method for the determination of the injection-locking range of oscillators is presented. The method involves three time dimensions: the first and the second are warped time scales used for the free-running frequency and the external excitation, respectively and the third is to account for slow transients to reach a steady-state regime. The locking range is determined by tuning the frequency of the external excitation until the oscillator locks. The locking condition is determined by analyzing the Jacobian matrix of the system. The method is advantageous in that the computational effort is independent of the presence of widely separated time constants in the oscillator. Numerical results for a Van Der Pol oscillator are presented

    An effective method for the determination of the locking range of an injection-locked frequency divider

    Get PDF
    The paper proposes a methodology for the determination of the locking range of an Injection-Locked Frequency Divider. The technique involves the use of the Warped Multi-time scale model and is applicable to oscillators in general. The ability to determine, in an efficient manner, the locking ranges of Injection Locked Frequency Dividers is of great importance to design engineers as ILFDs are suitable for lower-power wireless applications

    Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment

    Full text link
    We have developed a senior undergraduate experiment that illustrates frequency stabilization techniques using radio-frequency electronics. The primary objective is to frequency stabilize a voltage controlled oscillator to a cavity resonance at 800 MHz using the Pound-Drever-Hall method. This technique is commonly applied to stabilize lasers at optical frequencies. By using only radio-frequency equipment it is possible to systematically study aspects of the technique more thoroughly, inexpensively, and free from eye hazards. Students also learn about modular radio-frequency electronics and basic feedback control loops. By varying the temperature of the resonator, students can determine the thermal expansion coefficients of copper, aluminum, and super invar.Comment: 9 pages, 10 figure
    • 

    corecore