2 research outputs found

    Neuro-Controller Design by Using the Multifeedback Layer Neural Network and the Particle Swarm Optimization

    Get PDF
    In the present study, a novel neuro-controller is suggested for hard disk drive (HDD) systems in addition to nonlinear dynamic systems using the Multifeedback-Layer Neural Network (MFLNN) proposed in recent years. In neuro-controller design problems, since the derivative based train methods such as the back-propagation and Levenberg-Marquart (LM) methods necessitate the reference values of the neural network’s output or Jacobian of the dynamic system for the duration of the train, the connection weights of the MFLNN employed in the present work are updated using the Particle Swarm Optimization (PSO) algorithm that does not need such information. The PSO method is improved by some alterations to augment the performance of the standard PSO. First of all, this MFLNN-PSO controller is applied to different nonlinear dynamical systems. Afterwards, the proposed method is applied to a HDD as a real system. Simulation results demonstrate the effectiveness of the proposed controller on the control of dynamic and HDD systems

    Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation

    Get PDF
    Abstract We describe the design and control of a wearable robotic device powered by pneumatic artificial muscle actuators for use in ankle-foot rehabilitation. The design is inspired by the biological musculoskeletal system of the human foot and lower leg, mimicking the morphology and the functionality of the biological muscle-tendon-ligament structure. A key feature of the device is its soft structure that provides active assistance without restricting natural degrees of freedom at the ankle joint. Four pneumatic artificial muscles assist dorsiflexion and plantarflexion as well as inversion and eversion. The prototype is also equipped with various embedded sensors for gait pattern analysis. For the subject tested, the prototype is capable of generating an ankle range of motion of 27 • (14 • dorsiflexion and 13 • plantarflexion). The controllability of the system is experimentally demonstrated using a linear time-invariant (LTI) controller. The controller is found using an identified LTI model of the system, resulting from the interaction of the soft orthotic device with a human leg, and model-based classical control design techniques. The suitability of the proposed control strategy is demonstrated with several angle-reference following experiments
    corecore