116,208 research outputs found

    Degree Sequence Index Strategy

    Full text link
    We introduce a procedure, called the Degree Sequence Index Strategy (DSI), by which to bound graph invariants by certain indices in the ordered degree sequence. As an illustration of the DSI strategy, we show how it can be used to give new upper and lower bounds on the kk-independence and the kk-domination numbers. These include, among other things, a double generalization of the annihilation number, a recently introduced upper bound on the independence number. Next, we use the DSI strategy in conjunction with planarity, to generalize some results of Caro and Roddity about independence number in planar graphs. Lastly, for claw-free and K1,rK_{1,r}-free graphs, we use DSI to generalize some results of Faudree, Gould, Jacobson, Lesniak and Lindquester

    A lower bound on independence in terms of degrees

    Get PDF
    We prove a new lower bound on the independence number of a simple connected graph in terms of its degrees

    On Selkow's bound on the independence number of graphs

    Get PDF
    For a graph G with vertex set V (G) and independence number α(G), Selkow [A Probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363–365] established the famous lower bound ∑v∈V(G)1d(v)+1(1+max{d(v)d(v)+1-∑u∈N(v)1d(u)+1,0})vV(G)1d(v)+1(1+max{d(v)d(v)+1uN(v)1d(u)+1,0})\sum {_{v \in V(G)}{1 \over {d(v) + 1}}} \left( {1 + \max \left\{ {{{d(v)} \over {d(v) + 1}} - \sum {_{u \in N(v)}{1 \over {d(u) + 1}},0} } \right\}} \right) on α (G), where N(v) and d(v) = |N(v)| denote the neighborhood and the degree of a vertex v ∈ V (G), respectively. However, Selkow’s original proof of this result is incorrect. We give a new probabilistic proof of Selkow’s bound here

    Relative Fractional Independence Number and Its Applications

    Full text link
    We define the relative fractional independence number of two graphs, GG and HH, as α(GH)=maxWα(GW)α(HW),\alpha^*(G|H)=\max_{W}\frac{\alpha(G\boxtimes W)}{\alpha(H\boxtimes W)}, where the maximum is taken over all graphs WW, GWG\boxtimes W is the strong product of GG and WW, and α\alpha denotes the independence number. We give a non-trivial linear program to compute α(GH)\alpha^*(G|H) and discuss some of its properties. We show that α(GH)X(G)X(H),\alpha^*(G|H)\geq \frac{X(G)}{X(H)}, where X(G)X(G) can be the independence number, the zero-error Shannon capacity, the fractional independence number, the Lov'{a}sz number, or the Schrijver's or Szegedy's variants of the Lov'{a}sz number of a graph GG. This inequality is the first explicit non-trivial upper bound on the ratio of the invariants of two arbitrary graphs, as mentioned earlier, which can also be used to obtain upper or lower bounds for these invariants. As explicit applications, we present new upper bounds for the ratio of the zero-error Shannon capacity of two Cayley graphs and compute new lower bounds on the Shannon capacity of certain Johnson graphs (yielding the exact value of their Haemers number). Moreover, we show that the relative fractional independence number can be used to present a stronger version of the well-known No-Homomorphism Lemma. The No-Homomorphism Lemma is widely used to show the non-existence of a homomorphism between two graphs and is also used to give an upper bound on the independence number of a graph. Our extension of the No-Homomorphism Lemma is computationally more accessible than its original version

    Nombre chromatique fractionnaire, degré maximum et maille

    Get PDF
    We prove new lower bounds on the independence ratio of graphs of maximum degree ∆ ∈ {3,4,5} and girth g ∈ {6,…,12}, notably 1/3 when (∆,g)=(4,10) and 2/7 when (∆,g)=(5,8). We establish a general upper bound on the fractional chromatic number of triangle-free graphs, which implies that deduced from the fractional version of Reed's bound for triangle-free graphs and improves it as soon as ∆ ≥ 17, matching the best asymptotic upper bound known for off-diagonal Ramsey numbers. In particular, the fractional chromatic number of a triangle-free graph of maximum degree ∆ is less than 9.916 if ∆=17, less than 22.17 if ∆=50 and less than 249.06 if ∆=1000. Focusing on smaller values of ∆, we also demonstrate that every graph of girth at least 7 and maximum degree ∆ has fractional chromatic number at most min (2∆ + 2^{k-3}+k)/k pour k ∈ ℕ. In particular, the fractional chromatic number of a graph of girth 7 and maximum degree ∆ is at most (2∆+9)/5 when ∆ ∈ [3,8], at most (∆+7)/3 when ∆ ∈  [8,20], at most (2∆+23)/7 when ∆ ∈ [20,48], and at most ∆/4+5 when ∆ ∈ [48,112]
    corecore