55,844 research outputs found

    Local Causal States and Discrete Coherent Structures

    Get PDF
    Coherent structures form spontaneously in nonlinear spatiotemporal systems and are found at all spatial scales in natural phenomena from laboratory hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary climate dynamics. Phenomenologically, they appear as key components that organize the macroscopic behaviors in such systems. Despite a century of effort, they have eluded rigorous analysis and empirical prediction, with progress being made only recently. As a step in this, we present a formal theory of coherent structures in fully-discrete dynamical field theories. It builds on the notion of structure introduced by computational mechanics, generalizing it to a local spatiotemporal setting. The analysis' main tool employs the \localstates, which are used to uncover a system's hidden spatiotemporal symmetries and which identify coherent structures as spatially-localized deviations from those symmetries. The approach is behavior-driven in the sense that it does not rely on directly analyzing spatiotemporal equations of motion, rather it considers only the spatiotemporal fields a system generates. As such, it offers an unsupervised approach to discover and describe coherent structures. We illustrate the approach by analyzing coherent structures generated by elementary cellular automata, comparing the results with an earlier, dynamic-invariant-set approach that decomposes fields into domains, particles, and particle interactions.Comment: 27 pages, 10 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/dcs.ht

    Perspectives on the Neuroscience of Cognition and Consciousness

    Get PDF
    The origin and current use of the concepts of computation, representation and information in Neuroscience are examined and conceptual flaws are identified which vitiate their usefulness for addressing problems of the neural basis of Cognition and Consciousness. In contrast, a convergence of views is presented to support the characterization of the Nervous System as a complex dynamical system operating in the metastable regime, and capable of evolving to configurations and transitions in phase space with potential relevance for Cognition and Consciousness

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Beyond revealed preference: choice-theoretic foundations for behavioral welfare economics

    Get PDF
    We propose a broad generalization of standard choice-theoretic welfare economics that encompasses a wide variety of nonstandard behavioral models. Our approach exploits the coherent aspects of choice that those positive models typically attempt to capture. It replaces the standard revealed preference relation with an unambiguous choice relation: roughly, x is (strictly) unambiguously chosen over y (written xP*y) iff y is never chosen when x is available. Under weak assumptions, P* is acyclic and therefore suitable for welfare analysis; it is also the most discerning welfare criterion that never overrules choice. The resulting framework generates natural counterparts for the standard tools of applied welfare economics and is easily applied in the context of specific behavioral theories, with novel implications. Though not universally discerning, it lends itself to principled refinements

    Informational Model of Consciousness: From Philosophic Concepts to an Information Science of Consciousness

    Get PDF
    On the long and well-worn road of many, but justifiable attempts of human to discover his origin, his trajectory as a species, and a suitable understanding consciousness, his system allowing the connection to the environment and to his own organism, the concepts and models of philosophy enunciated or experienced by millennia, meet today with modern science concepts of physics and of science of information. Based on recent discoveries of quantum physics and astrophysics, revealing a new understanding of our environment and starting from some philosophical concepts on information of matter and of living structures, this work discusses the dynamics of information within the frame of the Informational Model of Consciousness as an informational system of the human body, connected both to the environment and to the body itself, to control the adaptation for survival. It is shown that consciousness is actually an informational projection in the mind of seven informational subsystems, three of which forming the operative system of consciousness for the short-term adaptation, and other three forming the programmed operating system, dedicated to the maintenance of body and to the long-term survival of species, showing various inputs and outputs of information. The seventh subsystem is the information pole, connecting the organism with the external information, especially related to the extra-sensorial properties of the mind, the human body appearing as a bipolar info-matter structure, managed by the brain. The received information is progressively integrated into the informational system of the organism, which absorbs and emanates information as a reactive system for adaptation, able to operate both with matter-related (codified) and non-matter related (virtual) information. As both connections with external and internal environment (body itself) can be described in terms of information, this model opens the gate to investigate consciousness by means of the tools of the information science, offering also answers to the philosophic “mind-body” problem and to the “hard” problem and showing correspondences with some ancient philosophies
    corecore