6,865 research outputs found

    An inequality involving the second largest and smallest eigenvalue of a distance-regular graph

    Get PDF
    For a distance-regular graph with second largest eigenvalue (resp. smallest eigenvalue) \mu1 (resp. \muD) we show that (\mu1+1)(\muD+1)<= -b1 holds, where equality only holds when the diameter equals two. Using this inequality we study distance-regular graphs with fixed second largest eigenvalue.Comment: 15 pages, this is submitted to Linear Algebra and Applications

    On the swap-distances of different realizations of a graphical degree sequence

    Get PDF
    One of the first graph theoretical problems which got serious attention (already in the fifties of the last century) was to decide whether a given integer sequence is equal to the degree sequence of a simple graph (or it is {\em graphical} for short). One method to solve this problem is the greedy algorithm of Havel and Hakimi, which is based on the {\em swap} operation. Another, closely related question is to find a sequence of swap operations to transform one graphical realization into another one of the same degree sequence. This latter problem got particular emphases in connection of fast mixing Markov chain approaches to sample uniformly all possible realizations of a given degree sequence. (This becomes a matter of interest in connection of -- among others -- the study of large social networks.) Earlier there were only crude upper bounds on the shortest possible length of such swap sequences between two realizations. In this paper we develop formulae (Gallai-type identities) for these {\em swap-distance}s of any two realizations of simple undirected or directed degree sequences. These identities improves considerably the known upper bounds on the swap-distances.Comment: to be publishe

    Broadcasting on Random Directed Acyclic Graphs

    Full text link
    We study a generalization of the well-known model of broadcasting on trees. Consider a directed acyclic graph (DAG) with a unique source vertex XX, and suppose all other vertices have indegree d≄2d\geq 2. Let the vertices at distance kk from XX be called layer kk. At layer 00, XX is given a random bit. At layer k≄1k\geq 1, each vertex receives dd bits from its parents in layer k−1k-1, which are transmitted along independent binary symmetric channel edges, and combines them using a dd-ary Boolean processing function. The goal is to reconstruct XX with probability of error bounded away from 1/21/2 using the values of all vertices at an arbitrarily deep layer. This question is closely related to models of reliable computation and storage, and information flow in biological networks. In this paper, we analyze randomly constructed DAGs, for which we show that broadcasting is only possible if the noise level is below a certain degree and function dependent critical threshold. For d≄3d\geq 3, and random DAGs with layer sizes Ω(log⁥k)\Omega(\log k) and majority processing functions, we identify the critical threshold. For d=2d=2, we establish a similar result for NAND processing functions. We also prove a partial converse for odd d≄3d\geq 3 illustrating that the identified thresholds are impossible to improve by selecting different processing functions if the decoder is restricted to using a single vertex. Finally, for any noise level, we construct explicit DAGs (using expander graphs) with bounded degree and layer sizes Θ(log⁥k)\Theta(\log k) admitting reconstruction. In particular, we show that such DAGs can be generated in deterministic quasi-polynomial time or randomized polylogarithmic time in the depth. These results portray a doubly-exponential advantage for storing a bit in DAGs compared to trees, where d=1d=1 but layer sizes must grow exponentially with depth in order to enable broadcasting.Comment: 33 pages, double column format. arXiv admin note: text overlap with arXiv:1803.0752

    Taut distance-regular graphs and the subconstituent algebra

    Get PDF
    We consider a bipartite distance-regular graph GG with diameter DD at least 4 and valency kk at least 3. We obtain upper and lower bounds for the local eigenvalues of GG in terms of the intersection numbers of GG and the eigenvalues of GG. Fix a vertex of GG and let TT denote the corresponding subconstituent algebra. We give a detailed description of those thin irreducible TT-modules that have endpoint 2 and dimension D−3D-3. In an earlier paper the first author defined what it means for GG to be taut. We obtain three characterizations of the taut condition, each of which involves the local eigenvalues or the thin irreducible TT-modules mentioned above.Comment: 29 page
    • 

    corecore