2,642 research outputs found

    Linear phase cosine modulated maximally decimated filter banks with perfect reconstruction

    Get PDF
    We propose a novel way to design maximally decimated FIR cosine modulated filter banks, in which each analysis and synthesis filter has a linear phase. The system can be designed to have either the approximate reconstruction property (pseudo-QMF system) or perfect reconstruction property (PR system). In the PR case, the system is a paraunitary filter bank. As in earlier work on cosine modulated systems, all the analysis filters come from an FIR prototype filter. However, unlike in any of the previous designs, all but two of the analysis filters have a total bandwidth of 2π/M rather than π/M (where 2M is the number of channels in our notation). A simple interpretation is possible in terms of the complex (hypothetical) analytic signal corresponding to each bandpass subband. The coding gain of the new system is comparable with that of a traditional M-channel system (rather than a 2M-channel system). This is primarily because there are typically two bandpass filters with the same passband support. Correspondingly, the cost of the system (in terms of complexity of implementation) is also comparable with that of an M-channel system. We also demonstrate that very good attenuation characteristics can be obtained with the new system

    Alias-free, real coefficient m-band QMF banks for arbitrary m

    Get PDF
    Based on a generalized framework for alias free QMF banks, a theory is developed for the design of uniform QMF banks with real-coefficient analysis filters, such that aliasing can be completely canceled by appropriate choice of real-coefficient synthesis filters. These results are then applied for the derivation of closed-form expressions for the synthesis filters (both FIR and IIR), that ensure cancelation of aliasing for a given set of analysis filters. The results do not involve the inversion of the alias-component (AC) matrix

    Discrete multitone modulation with principal component filter banks

    Get PDF
    Discrete multitone (DMT) modulation is an attractive method for communication over a nonflat channel with possibly colored noise. The uniform discrete Fourier transform (DFT) filter bank and cosine modulated filter bank have in the past been used in this system because of low complexity. We show in this paper that principal component filter banks (PCFB) which are known to be optimal for data compression and denoising applications, are also optimal for a number of criteria in DMT modulation communication. For example, the PCFB of the effective channel noise power spectrum (noise psd weighted by the inverse of the channel gain) is optimal for DMT modulation in the sense of maximizing bit rate for fixed power and error probabilities. We also establish an optimality property of the PCFB when scalar prefilters and postfilters are used around the channel. The difference between the PCFB and a traditional filter bank such as the brickwall filter bank or DFT filter bank is significant for effective power spectra which depart considerably from monotonicity. The twisted pair channel with its bridged taps, next and fext noises, and AM interference, therefore appears to be a good candidate for the application of a PCFB. This is demonstrated with the help of numerical results for the case of the ADSL channel

    The factorization of M-channel FIR and IIR cosine-modulated filter banks and their multiplier-less realizations using sopot coefficients

    Get PDF
    The 47th Midwest Symposium on Circuits and Systems Conference Proceedings, Salt Lake City, Utah, USA, 25-28 July 2004This paper proposes a new factorization for the M-channel perfect reconstruction (PR) IIR Cosine-Modulated filter banks (CMFB) proposed previously by the authors. This factorization, which is based on the lifting scheme, is also complete for the PR FIR CMFB as well as the general two-channel PR IIR filter banks if the determinant of the polyphase matrix is equal to constant multiplies of signal delays. It can be used to convert a numerically optimized nearly PR CMFB to a structurally PR system. Furthermore, the arithmetic complexity of the FB using this structure can be reduced asymptotically by a factor of two. When the forward and inverse transforms are implemented with the same set of SOPOT coefficients, a multiplier-less CMFB can be obtained. Its arithmetic complexity is further reduced and it becomes very attractive for VLSI implementation.published_or_final_versio

    M-channel cosine-modulated wavelet bases

    Get PDF
    The 13th International Conference on Digital Signal Processing, Santorini, Greece, 2-4 July 1997In this paper, we propose a new M-channel wavelet bases called the cosine-modulated wavelets. We first generalize the theory of two-channel biorthogonal compactly supported wavelet bases to the M-channel case. A sufficient condition for the M-channel perfect reconstruction filter banks to construct M-channel compactly supported wavelet bases is given. By using this condition, a family of orthogonal and biorthogonal M-channel cosine-modulated wavelet bases is constructed by iterations of cosine-modulated filter banks (CMFB). The advantages of the approach are their simple design procedure, efficient implementation and good filter quality. A method for imposing the regularity on the cosine-modulated filter banks is also introduced and design example is given.published_or_final_versio

    M-Channel compactly supported biorthogonal cosine-modulated wavelet bases

    Get PDF
    In this correspondence, we generalize the theory of compactly supported biorthogonal two-channel wavelet bases to M -channel. A sufficient condition for the M-channel perfect reconstruction filter banks to construct M-channel biorthogonal bases of compactly supported wavelets is derived. It is shown that the construction of biorthogonal Af-channel wavelet bases is equivalent to the design of a Af-channel perfect reconstruction filter bank with some added regularity conditions. A family of M-channel biorthogonal wavelet bases based on the cosinemodulated filter bank (CMFB) is proposed. It has the advantages of simple design procedure, efficient implementation, and good filter quality. A new method for imposing the regularity on the CMFB's is also introduced, and several design examples are given. ©1998 IEEE.published_or_final_versio

    A Spectral Factorization Approach to Pseudo-QMF Design

    Get PDF
    A new approach to the design of M-channel pseudoquadrature-mirror-filter (QMF) banks is presented. In this approach, the prototype filter is obtained as a spectral factor of a 2Mth band filter. This completely eliminates the need for optimization whereas in conventional pseudo-QMF designs, the main computational effort is in optimization of the prototype. As in the conventional approach, the aliasing cancellation (AC) constraint ensures that all the significant aliasing terms are canceled. The overall transfer function T(z) of the analysis/synthesis system has a linear phase and an approximately “flat” magnitude response in the frequency region ε ≤ ω ≤ (π - ε), where ε depends on the transition bandwidth of the prototype and 0 < ε < (π/2M). Three design examples are included

    Multichannel Sampling of Pulse Streams at the Rate of Innovation

    Full text link
    We consider minimal-rate sampling schemes for infinite streams of delayed and weighted versions of a known pulse shape. The minimal sampling rate for these parametric signals is referred to as the rate of innovation and is equal to the number of degrees of freedom per unit time. Although sampling of infinite pulse streams was treated in previous works, either the rate of innovation was not achieved, or the pulse shape was limited to Diracs. In this paper we propose a multichannel architecture for sampling pulse streams with arbitrary shape, operating at the rate of innovation. Our approach is based on modulating the input signal with a set of properly chosen waveforms, followed by a bank of integrators. This architecture is motivated by recent work on sub-Nyquist sampling of multiband signals. We show that the pulse stream can be recovered from the proposed minimal-rate samples using standard tools taken from spectral estimation in a stable way even at high rates of innovation. In addition, we address practical implementation issues, such as reduction of hardware complexity and immunity to failure in the sampling channels. The resulting scheme is flexible and exhibits better noise robustness than previous approaches

    Subband merging in cosine-modulated filter banks

    Full text link
    corecore