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Abstract

In this paper, we propose a new M-channel wavelet bases called the cosine-modulated wavelets. We first generalize
the theory of two-channel biorthogonal compactly supported wavelet bases to the M-channel case. A sufficient
condition for the M-channel perfect reconstruction filter banks to construct M-channel compactly supported wavelet
bases is given. By using this condition, a family of orthogonal and biorthogonal M-channel cosine-modulated wavelet
bases is constructed by iterations of cosine-modulated filter banks (CMFB). The advantages of the approach are their
simple design procedure, efficient implementation and good filter quality. A method for imposing the regularity on
the cosine-modulated filter banks is also introduced and design example is given.

1. Introduction

Wavelets are functions generated from the dilations
and translations of one basic function called the
wavelet function [1]. More recently, wavelet functions
have been constructed and studied extensively both in
the mathematical and signal processing communities
[1]-[4]. In signal analysis, wavelet transform (WT),
which is a representation of a signal in terms of a set of
wavelet basis functions, allows the signal to be
analyzed in different resolutions or scales. WT makes a
different resolution trade-off in the time-frequency
plane as compared with the short-time Fourier
transform. It has better time resolution in high
frequency and better frequency resolution in low
frequency. This property is wuseful to detect
discontinuity in non-stationary signals which usually
have slowly varying components accompanied with
transient high frequency spikes.

The theory of wavelets is closely related to perfect
reconstruction (PR) multirate filter banks. Daubechies
[1] constructed compactly supported orthonormal
wavelets from iterations of two-channel discrete filter
banks with certain regularity condition. Since two-
channel paraunitary PR filter banks cannot have non-
trivial linear phase solution, more general biorthogonal
filter banks were studied. In [2], more general
biorthogonal compactly supported wavelet bases were
introduced with similar regularity condition. The idea
of constructing orthonormal wavelets by multirate filter
banks has also been extended to the more general case
of M-channel orthonormal wavelets [3], [4]. Like the
dyadic case, it is also possible to obtain M-channel
wavelets bases from M-channel PR orthogonal filter
banks with added regularity condition.

In this paper, we first derive a sufficient condition for a

biorthogonal M-channel PR filter banks to construct a
biorthogonal M-channel compactly supported wavelet
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bases. It is shown that the lowpass filter in the PR filter
bank has to satisfy similar regularity condition and the
bandpass and highpass filters have to satisfy the
admissible condition. Then, we propose to use the
cosine-modulated filter banks (CMFB) [6]-[9], {11] to
construct such wavelet bases. The design of M-channel
wavelet bases is more difficult than the two-channel
case due to the large number of design parameters and
difficulties in meeting the regularity condition. The
advantages of the CMFB are their low design and
implementation complexities, good filter quality, and
case in imposing the regularity conditions. Both
orthogonal and biorthogonal M-channel wavelets can
be constructed by CMFB.

We shall use the following notations. A,[n] and g [n],
i=0l,.., M -1, respectively, represent analysis and
synthesis filters of M-channel filter banks {5]. g,[n]
represents the mirror image of g,[n], namely,
g ml=gl-nl. ox) and vy, (x), i=12,..,M~1,
represent, respectively, the scaling and wavelet
functions. While ¢(x) and ,(x) are the

corresponding dual functions. Caption letter represents
discrete-time Fourier transform or Fourier transform.

In Section 2, we shall briefly review the theory of the
M-channel wavelets. Section 3 is devoted to an
overview of M-channel CMFB. Design procedure and
design example of the M-channel cosine-modulated
wavelet bases are given in Section 4. Finally, we
summarize our results in the conclusion.

2. Theory of M-channel Wavelets

In [3} and [4], the M-channel orthonormal wavelets are
constructed by iteration of M-channel orthogonal filter
banks. The analysis and synthesis filters are time-
inverse of each other. In the biorthogonal cases, there is
not such restriction.
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Here, we have two dual bases, each generated from a
set of wavelet functions. First of all, we start with the

discrete-time Fourier transforms (scaled by M ™) of
hy[n] and g,[n],

Hy(w)= M"Y k[l ™, -1

Gylw)= M"Y g lnk ™. (2-2)

By iterating these discrete-time filters, it is possible to
define the Fourier transform ®(§) and Eﬁ(ﬁ) of the

scaling function ¢{x) and its dual $(x) using the
following infinite products:

o) = Qny [ H, (M8, @3)

Jj=t
dE)=em G, 24
j=1
These infinite products can only-converge if,
H0)=G,®=1. (2-5)
(2-3) and (2-4) will then converge uniformly and
absolutely on compact sets to ®(&) and &D(&) which

are well-defined C7 functions. From (2-3) and (2-4),
we also have:

n 5 ols )
DE) = Hy(2) D2, (2-6)
& jand _§~ Ni -
®(§)—GU(M) CI>(M)- (2-7)

Taking the inverse Fourier Transform leads to the well
known two-scale difference equations of ¢(x) and its

dual a)(x) as follows:

) =M D B n(Mx—n),  (2-8)

o) =M Y o nl(Mx—n). (29

(2-8) and (2-9) tell us that ¢(x)and ¢(x)can be
written as a linear combination of their contracted (by
M) and shifted versions. Therefore the space spanned
by:

QU (x) = MM x ~ k),

00y = M QM x—k), keZ (2-10)
at a given resolution j can be viewed as a multiscale
approximation of a signal f(x). To show that ¢(x)

and 5(x) can be used to generate a basis, we need M-1

wavelet functions and their duals to describe the
remaining “details” in the approximation.

v, 0 =AM Y [l Mx—n), (2-11)

§,00=VM Y §Ino(Mx—n), (2-12)

where i=12,..,M~—1.

We can also define y"“* (x) and ¥ (x) as:

YO = My (M x - k), (2-13)
TR ()= MG (M~ x—k), (2-14)
keZi=12,..,M~-1.
We give an important theorem without proof. For more
details on the proof, interested readers can refer to [10].

Theorem 2.1

The functions wi"*(x) and §¥* (x), constructed as
(2-13) and (2-14), generate a biorthogonal M-channel
wavelet bases in I*(R) if they satisty the following
three conditions:

(C1) Aln] and g,[n], i=01,..., M -1 constitute a

PR M-channel filter bank;
1 -
(C2) hin]=0and — Anl=
J_ T2t NI ;g
i=12,.,M-1;
(C3) Both Hy(w)and G,(w)have K order zeros at
2 7
0, = 12 M-1K 21
) M

(C2) ensures that the wavelets will satisfy the
admissible conditions[1]:

¥, %)
———df <o and dE < o0 (2-15)
=y g

(C3) is the familiar regularity condition. (C3) together
with (C1) will ensure that WY (x) and §V(x)

constitute a Riesz bases in L*(R) . Therefore, we have,
for any f(x)e 2(R), flx)= 2 ciOyIh | jkeZ

Jki
with ¢U® = <f(x) \yf”‘)>. These two equations are

called the wavelet series and wavelet coefficients,
respectively.

3. Theory of CMFB

In this section, we shall introduce the theory of CMFB
and its design procedure. More details can be found in

[61-[9], [11]. In CMFB, the analysis filter bank f, (n)
and synthesis filter bank g,(n) are obtained
respectively by modulating the prototype filters
h(n) and s(n),

fi(n)=h(n)c,, .
& (n)=s(n)c,, »
k=01..M~1, n=01.,N=1,  (3-1

where M is the number of channels and N is the length
of the filters. Two possible modulations can be used:

Con = 2cos[<2k+1>%(n— N - SIS %j  (3-22)

_ 12 o M+
Con = \/;COS((ZIC +1) Yy, (n+ 2 )) . (3-2b)
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(3-2b) is used in Malvar’s ELT{8]. Without losing
generality we use the (3-2a) as the modulation. For
simplicity, we shall consider the case N=2mM in this
paper. The arbitrary length case is considered in [11].
It can be seen that analysis and synthesis modulations
are time reverse of each other. Therefore that, if h(n)is
equal to s(n) and is a linear phase filter, then A (n)
and g, (n) will be time-reverse of each other and we

obtain the orthogonal CMFB. On the other hand, if
h(n) is a non-linear phase filter, then we obtain a

biorthogonal CMFB. 7,(n) and g, (n) will not be

time-reverse of each other any more.

2M-1
Let H(z)= Zz”’Gq(zZM) be the type-l polyphase

4=0

decomposition [5] of the prototype filter, it can be
shown [11] that the PR conditions are given by:

G, (DG (D) + Gy (DG, (D)= D'z*". (3-3)
For orthogonal CMFB, the PR conditions are further
simplified to:

Gk (Z)Gk (z)+ GM+I< (Z)GM+k (Z) =1. (3-4)
It can be seen that the PR conditions in (3-3) and (3-4)
depend only on the prototype filter h(n). This is the
reason why the design complexity has been greatly
reduced. In the orthogonal case, the number of free
parameters is further reduced by half due to the linear-
phase property of the prototype filter.

For the CMFB, the analysis filters will be frequency
shifted version of the prototype filter. Therefore, the
optimization objective function is reduced to:

®=["|H()| do, (3-5)

o,

where @, is the stop-band cutoff frequency whose

value should be between —— and —-. Larger ®,
2M M

leads to larger stop-band attenuation but the overlap
between adjacent analysis, or synthesis filters will also
increase. It is also possible to replace the integral in
(3-5) by a summation. This has the advantage of being
able to put different weighting to different parts of the
stop-band and provides more control over the stop-
band attenuation.

The design problem is then formulated as the following
constrained optimization problem:

min L ’H(e/‘“)’2clu) , (3-6)

subjected to the PR conditions in (3-3) or (3-4)
for orthogonal and biorthogonal CMFB, where
h is the vector containing the impulse response
of the prototype filter.

In the case of biorthogonal CMFB, the linear phase
requirement of the prototype filter is relaxed. Therefore
we have more freedom in choosing its coefficients. At
the same time, the number of the PR conditions in (3-

3) also increases accordingly. Interested readers can
refer to [9], [11] for more details. We shall see in next
section that the frequency shifted property of the CMFB
is very useful to satisfy (C2) and (C3) in Theorem 2.1
for constructing orthogonal and biorthogonal cosine
modulated wavelet bases.

4. Design of M-channel
Cosine-Modulated Wavelets

To generate wavelet filter bank, the lowpass analysis

and synthesis filters should be of form [4]{9]:
Fy(z)=CO+z "+ 4z " B(z), (4-1)

where B(z) is a polynomial of z and C is a constant.

In [9], we have proposed a method to design the M-
channel orthogonal cosine-modulated wavelets that can
structurally impose the regularity condition on F (z).
This can also be used in the biorthogonal case. Our
approach is to decompose the prototype filter H(z)
into two parts:
H(z)=0(2)P(2), 4-2)

and determine the polynomial P(z) such that after
modulation Fy(z) will have the required zeros at
®, =%\£j~ ,¢=12,..., M —1. From (4-2), we notice that

fo(n) is derived from h(n) using the following cosine

modulation:
T N-1_=
n)=2h(n)cos| —(n— +—
Jo(n)=2h(n)co [2M(n 5 ) 4)
=2h(n) COS(_Z%/I—n +¢), where, ¢= (—M_T/X/[—tm s

n=01..,N—1. Therefore the frequency response of
foln), F,(e),is given by:
Fy(e™)y=e®H(e" M Y4 e H" Wy (4-3)
It means that H(e’) is shifted along the frequency
axis by T oand — Lt o, are zeros of F,(e),
2M 2M )

then the right hand side of (4-3) should also be zero.
This will be the case if H(e’) have zeros at

®, i%. Therefore, for the M-channel CMFB to

have K-vanishing moment, H(e’”) should have zeros
(dntDm
— . n
2M
polynomial P(z) is then given by:

of order K at @, = =12,....,M ~1. The

K

4n+l /_4(M—ﬂ)*l"
)| @4

P =( [ -2 e e’ o

=l

Hence, by multiplying P(z) with 0O(z), which
contains the free parameters, the prototype filter H(z)

will always satisfy (C3) of Theorem 2.1. It is interesting
to note that due to the frequency shifted properties, all
the highpass and bandpass filters will have the same
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number of zeros at =0 and satisfy (C2)
automatically.

This design procedure for the orthogonal and
biorthogonal cases is similar except for the different
filter banks (orthogonal or biorthogonal). Here we only
give an example of biorthogonal cosine-modulated
wavelets. In this example, the parameters of the CMFB
are M=4, K=1 and N=40. Fig.l are the scaling
function, the three wavelet functions and their duals.
Fig.2 are the impulse and frequency response of
prototype filter. In our example, these basis functions
are obtained from iterating the corresponding two-level
tree-structured CMFB.

5. Conclusion

In this paper we have presented a sufficient condition
for constructing M-channel wavelets and proposed a
family of M-channel cosine-modulated wavelet bases.
The advantages of the approach are their simple design
procedure, efficient implementation and good filter
quality. Design example is given to demonstrate the
usefulness of the method.
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