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Abstract 

In this paper, we propose a new M-channel wavelet bases called the cosine-modulated wavelets. We first generalize 
the theory of two-channel biorthogonal compactly supported wavelet bases to the M-channel case. A sufficient 
condition for the M-channel perfect reconstruction filter banks to construct M-channel compactly supported wavelet 
bases is given. By using this condition, a family of orthogonal and biorthogonal M-channel cosine-modulated wavelet 
bases is constructed by iterations of cosine-modulated filter banks (CMFB). The advantages of the approach are their 
simple design procedure, efficient implementation and good filter quality. A method for imposing the regularity on 
the cosine-modulated filter banks is also introduced and design example is given. 

1. Introduction 

Wavelets are functions generated from the dilations 
and translations of one basic function called the 
wavelet function [l] .  More recently, wavelet functions 
have been constructed and studied extensively both in 
the mathematical and signal processing communities 
[I]-[4]. In signal analysis, wavelet transform (WT), 
which is a representation of a signal in terms of a set of 
wavelet basis functions, allows the signal to be 
analyzed in different resolutions or scales. WT makes a 
different resolution trade-off in the time-frequency 
plane as compared with the short-time Fourier 
transform. It has better time resolution in high 
frequency and better frequency resolution in low 
frequency. This property is useful to detect 
discontinuity in non-stationary signals which usually 
have slowly varying components accompanied with 
transient high frequency spikes. 

The theory of wavelets is closely related to perfect 
reconstruction (PR) multirate filter banks. Daubechies 
[ 11 constructed compactly supported orthonormal 
wavelets from iterations of two-channel discrete filter 
banks with certain regularity condition. Since two- 
channel paraunitary PR filter banks cannot have non- 
trivial linear phase solution, more general biorthogonal 
filter banks were studied. In [2], more general 
biorthogonal compactly supported wavelet bases were 
introduced with similar regularity condition. The idea 
of constructing orthonormal wavelets by multirate filter 
banks has also been extended to the more general case 
of M-channel orthonormal wavelets [3], [4]. Like the 
dyadic case, it is also possible to obtain M-channel 
wavelets bases from M-channel PR orthogonal filter 
banks with added regularity condition. 

In this paper, we first derive a sufficient condition for a 
biorthogonal M-channel PR filter banks to construct a 
biorthogonal M-channel compactly supported wavelet 
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bases. It is shown that the lowpass filter in the PR filter 
bank has to satisfy similar regularity condition and the 
bandpass and highpass filters have to satisfy the 
admissible condition. Then, we propose to use the 
cosine-modulated filter banks (CMFB) [6]-191, [ 1 I] to 
construct such wavelet bases. The design of M-channel 
wavelet bases is more difficult than the two-channel 
case due to the large number of design parameters and 
difficulties in meeting the regularity condition. The 
advantages of the CMFB are their low design and 
implementation complexities, good filter quality, and 
ease in imposing the regularity conditions. Both 
orthogonal and biorthogonal M-channel wavelets can 
be constructed by CMFB. 

We shall use the following notations. h, [n] and g, [n], 
i = O,l, ..., M - 1, respectively, represent analysis and 
synthesis filters of M-channel filter banks [5]. g”,[n] 
represents the mirror image of g , [ n ] ,  namely, 

g”,[nl=g,[-n]. $(XI  and v,(x), i=1,2 ,..., M - I ,  
represent, respectively, the scaling and wavelet 
functions. While $(x) and W , ( X )  are the 
corresponding dual functions. Caption letter represents 
discrete-time Fourier transform or Fourier transform. 

- 

In Section 2, we shall briefly review the theory of the 
M-channel wavelets. Section 3 is devoted to an 
overview of M-channel CMFB. Design procedure and 
design example of the M-channel cosine-modulated 
wavelet bases are given in Section 4. Finally, we 
summarize our results in the conclusion. 

2. Theory of M-channel Wavelets 

In [3] and [4], the M-channel orthonormal wavelets are 
constructed by iteration of M-channel orthogonal filter 
banks. The analysis and synthesis filters are time- 
inverse of each other. In the biorthogonal cases, there is 
not such restriction. 
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Here, we have two dual bases, each generated from a 
set of wavelet functions. First of all, we start with the 
discrete-time Fourier transfoi-ms (scaled by M-”’ ) of 
h,, [.I and io [nl ,  

H,(o) = M-”?Ch,,[rz]e-’“~, (2-1) 

G,,(o) = M - ” 2 x g , j [ n ] e - J n w .  (2-2) 
I 

By iterating these discrete-time filters, it is possible to 
define the Fourier transform a([) and 6(<) of the 

scaling function @(x) and its dual $(x) using the 
following infinite products: 

Q(5) = ( 2 7 ~ - ” ~ f i H ~ ) ( M - ~ k ) ,  (2-3) 

6(g) = ( ~ T I ) - ~ ” ~ G ~ ( M - ~ ~ ) .  (2-4) 

’=I 

J=I 

These infinite products can onlyconverge if, 

(2-3) and (2-4) will then converge uniformly and 
absolutely on compact sets to @([) and &(5) which 

are well-defined C” functions. From (2-3) and (2-4), 
we also have: 

H(,(O) = G”(0) = 1 (2-5) 

Taking the inverse Fourier Transform leads to the well 
known two-scale difference equations of $(x) and its 

dual 6(x) as follows: 

$ ( ~ ) = f i x h , , L n N ( M x - n ) ,  (2-8) 

$(x) = f i x  g”,[rz]$( Mx - 1 2 ) .  (2-9) 
1 

(2-8) and (2-9) tell us that $(x) and 6(x) can be 
written as a linear combination of their contracted (by 
M) and shifted versions. Therefore the space spanned 
by: 

$0 P J ( x )  = ~ - 1 ’ 2  $(M-’x  - k ) ,  

@ O . k J ( x )  = ~ - 1 ’ 2  $ ( M - ’ x - k ) ,  k E Z  
- - 

(2-10) 
at a given resolution j can be viewed as a multiscale 
approximation of a signal J ( x )  . To show that @(x) 

and $(x) can be used to generate a basis, we need M-1 
wavelet functions and their duals to describe the 
remaining “details” in the approximation. 

w, (x) = f i x h ; [ l Z l $ (  Mx - / I )  , 

@ , ( x ) = ~ C g ” , [ n ] ~ ( M x - r 2 ) ,  (2-12) 

(2-1 1) 

where i = 1,2 ,..., M - 1 . 

We can also define iy”,”(x) and @“”(x) as: 

i y i ’ , k ’ ( x )  = M - j ’ * ~ ~ ( M - ’ x - k ) ,  (2-13) 
@;J . ” ( ( . )  = M-1’2- ~ , ( M - ’ x - k ) ,  (2-14) 

k E Z , i = 1 , 2  ,..., M-1.  
We give an important theorem without proof. For more 
details on the proof, interested readers can refer to [lo]. 

Theorem 2.1 

The functions yf:J.k ’ (x)  and @ i j . k ) ( x ) ,  constructed as 
(2-13) and (2-14), generate a biorthogonal M-channel 
wavelet bases in  L2(%) if they satisfy the following 
three conditions: 

(Cl) 4 [ n ]  and g,[n],  i = O,1, ..., M-I. constitute a 
PR M-channel filter bank; 

I 1 
(C2) ---Chi[n]=Oand--g”,[nJ=O, hi7 (1 hi7 J7 

i = 1,2, ..., M-1 ; 
(C3) Both H,(a) and Go (a) have K order zeros at 

2z.e 
M 

0, = -, t = 1,2,. .., M - 1, K 2 1 . 

(C2) ensures that the wavelets will satisfy the 
admissible conditions[ 11: 

(C3) is the familiar regularity condition. (C3) together 
with (Cl) will ensure that $ ’ ~ k ’ ( ~ )  and @i’,”(x) 
constitute a Riesz bases in L’(%). Therefore, we have, 
for any f ( x )  E L?(%) , f ( x )  = ~ ~ \ ~ ~ ‘ ) i y ~ j . ’ )  , j ,  k E Z 

with c,!~,,) = (f(x),$’.”) . These two equations are 

called the wavelet series and wavelet coefficients, 
respectively. 

1,k.i 

3. Theory of CMFB 

In this section, we shall introduce the theory of CMFB 
and its design procedure. More details can be found in 
[6]-191, [11]. In CMFB, the analysis filter bank f , ( n )  
and synthesis filter bank g , ( n )  are obtained 
respectively by modulating the prototype filters 
h(n) and s(n), 

s, ( n )  = h(n)c,,, > 

8,  (n )  = S(~~)C-k,, > 

k=0,1, ... M-1,  12=0,1, ..., N - I ,  (3-1) 
where M is the number of channels and N is the length 
of the filters. Two  oss sib le modulations can be used: 

, (3-2a) 
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number of zeros at o = 0 and satisfy (C2) 
automatically. 
This design procedure for the orthogonal and 
biorthogonal cases is similar except for the different 
filter banks (Orthogonal or hiorthogonal). Here we only 
give an example of biorthogonal cosine-modulated 
wavelets. In this example, the parameters of the CMFB 
are M=4, K=l and N=40. Fig.1 are the scaling 
function, the three wavelet functions and their duals. 
Fig.2 are the impulse and frequency response of 
prototype filter. In our example, these basis functions 
are obtained from iterating the corresponding two-level 
tree-structured CMFB. 

5 .  Conclusion 

In this paper we have presented a sufficient condition 
for constructing M-channel wavelets and proposed a 
family of M-channel cosine-modulated wavelet bases. 
The advantages of the approach are their simple design 
procedure, efficient implementation and good filter 
quality. Design example is given to demonstrate the 
usefulness of the method. 
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I Scaling and wavelet functions and their dual functions 

Fig.2 Prototype filter of 4-channel CMFB 
(a) Frequency response (b) Impulse response 
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