2 research outputs found

    Ensemble Identification of Spectral Bands Related to Soil Organic Carbon Levels over an Agricultural Field in Southern Ontario, Canada

    Get PDF
    The recent use of hyperspectral remote sensing imagery has introduced new opportunities for soil organic carbon (SOC) assessment and monitoring. These data enable monitoring of a wide variety of soil properties but pose important methodological challenges. Highly correlated hyperspectral spectral bands can affect the prediction and accuracy as well as the interpretability of the retrieval model. Therefore, the spectral dimension needs to be reduced through a selection of specific spectral bands or regions that are most helpful to describing SOC. This study evaluates the efficiency of visible near-infrared (VNIR) and shortwave near-infrared (SWIR) hyperspectral data to identify the most informative hyperspectral bands responding to SOC content in agricultural soils. Soil samples (111) were collected over an agricultural field in southern Ontario, Canada and analyzed against two hyperspectral datasets: An airborne Nano-Hyperspec imaging sensor with 270 bands (400–1000 nm) and a laboratory hyperspectral dataset (ASD FieldSpec 3) along the 1000–2500 nm range (NIR-SWIR). In parallel, a multimethod modeling approach consisting of random forest, support vector machine, and partial least squares regression models was used to conduct band selections and to assess the validity of the selected bands. The multimethod model resulted in a selection of optimal band or regions over the VNIR and SWIR sensitive to SOC and potentially for mapping. The bands that achieved the highest respective importance values were 711–715, 727, 986–998, and 433–435 nm regions (VNIR); and 2365–2373, 2481–2500, and 2198–2206 nm (NIR-SWIR). Some of these bands are in agreement with the absorption features of SOC reported in the literature, whereas others have not been reported before. Ultimately, the selection of optimal band and regions is of importance for quantification of agricultural SOC and would provide a new framework for creating optimized SOC-specific sensors

    MIMN-DPP: Maximum-information and minimum-noise determinantal point processes for unsupervised hyperspectral band selection

    Get PDF
    Band selection plays an important role in hyperspectral imaging for reducing the data and improving the efficiency of data acquisition and analysis whilst significantly lowering the cost of the imaging system. Without the category labels, it is challenging to select an effective and low-redundancy band subset. In this paper, a new unsupervised band selection algorithm is proposed based on a new band search criterion and an improved Determinantal Point Processes (DPP). First, to preserve the original information of hyperspectral image, a novel band search criterion is designed for searching the bands with high information entropy and low noise. Unfortunately, finding the optimal solution based on the search criteria to select a low-redundancy band subset is a NP-hard problem. To solve this problem, we consider the correlation of bands from both original hyperspectral image and its spatial information to construct a double-graph model to describe the relationship between spectral bands. Besides, an improved DPP algorithm is proposed for the approximate search of a low-redundancy band subset from the double-graph model. Experiment results on several well-known datasets show that the proposed optical band selection algorithm achieves better performance than many other state-of-the-art methods
    corecore