3 research outputs found

    Improved results on fuzzy H ∞ filter design for T-S fuzzy systems

    Get PDF
    The fuzzy H ∞ filter design problem for T-S fuzzy systems with interval time-varying delay is investigated. The delay is considered as the time-varying delay being either differentiable uniformly bounded with delay derivative in bounded interval or fast varying (with no restrictions on the delay derivative). A novel Lyapunov-Krasovskii functional is employed and a tighter upper bound of its derivative is obtained. The resulting criterion thus has advantages over the existing ones since we estimate the upper bound of the derivative of Lyapunov-Krasovskii functional without ignoring some useful terms. A fuzzy H ∞ filter is designed to ensure that the filter error system is asymptotically stable and has a prescribed H ∞ performance level. An improved delay-derivative-dependent condition for the existence of such a filter is derived in the form of linear matrix inequalities (LMIs). Finally, numerical examples are given to show the effectiveness of the proposed method. © 2010 Jiyao An et al

    Delay-Dependent Fuzzy Hyperbolic Model Based on Data-Driven Guaranteed Cost Control for a Class of Nonlinear Continuous-Time Systems with Uncertainties

    Get PDF
    This paper develops the fuzzy hyperbolic model with time-varying delays guaranteed cost controller design via state-feedback for a class of nonlinear continuous-time systems with parameter uncertainties. A nonlinear quadratic cost function is developed as a performance measurement of the closed-loop fuzzy system based on fuzzy hyperbolic model with time-varying delays. Some sufficient conditions for the existence of such a fuzzy hyperbolic model based on data-driven guaranteed cost controller via state feedback are presented by a set of linear matrix inequalities (LMIs). A simulation example is provided to illustrate the effectiveness of the proposed approach

    Robust H

    Get PDF
    The robust filtering problem for a class of uncertain discrete-time fuzzy stochastic systems with sensor nonlinearities and time-varying delay is investigated. The parameter uncertainties are assumed to be time varying norm bounded in both the state and measurement equations. By using the Lyapunov stability theory and some new relaxed techniques, sufficient conditions are proposed to guarantee the robustly stochastic stability with a prescribed H∞ performance level of the filtering error system for all admissible uncertainties, sensor nonlinearities, and time-varying delays. These conditions are dependent on the lower and upper bounds of the time-varying delays and are obtained in terms of a linear matrix inequality (LMI). Finally, two simulation examples are provided to illustrate the effectiveness of the proposed methods
    corecore