2 research outputs found

    An Efficient Finger Allocation Method for the Maximum Likelihood RAKE Receiver

    Get PDF
    In wideband wireless communication systems the RAKE receiver is commonly used to collect the resolvable multipath energy and counter the effects of fading through diversity. However, in channels with large delay and energy spread, its high complexity still remains a major issue. This motivates the study and application of computationally efficient finger placement algorithms that significantly reduce the receiver complexity with a reasonable performance loss. In this paper, a low–complexity maximum likelihood RAKE receiver, the Suboptimum – Maximum Power Minimum Correlation (S–MPMC) RAKE is proposed. The allocation of its first two fingers is based on the received signal correlation properties. Their positions determine also the placement of the rest of the fingers. Simulation results are provided to show the operation of the receiver and demonstrate its performance. Comparisons with relevant methods are performed to corroborate the merits of the proposal. The balance on the performance and the complexity of the technique makes it suitable for use in commercial wideband communication systems

    Impact of Finger Placement on the Correlation Properties of Rake Combined Signals

    Get PDF
    3G mobile devices and base stations employ rake receivers. An important issue in the design of such receivers is finger allocation. This paper explores the relationship between finger placement and the correlation properties of rake combined signals. The dependence of correlation coefficients on system parameters such as the multipath characteristics of the propagation channel, the number of users, the processing gain and the thermal noise power is also discussed. Several conclusions useful in the analysis and design of rake receivers are drawn. A low complexity finger placement algorithm is finally suggested. In the proposed receiver, finger allocation is based on the correlation properties of the desired signal component only. The receiver performs close to complex structures in the literature
    corecore