1,741 research outputs found

    Video Interpolation using Optical Flow and Laplacian Smoothness

    Full text link
    Non-rigid video interpolation is a common computer vision task. In this paper we present an optical flow approach which adopts a Laplacian Cotangent Mesh constraint to enhance the local smoothness. Similar to Li et al., our approach adopts a mesh to the image with a resolution up to one vertex per pixel and uses angle constraints to ensure sensible local deformations between image pairs. The Laplacian Mesh constraints are expressed wholly inside the optical flow optimization, and can be applied in a straightforward manner to a wide range of image tracking and registration problems. We evaluate our approach by testing on several benchmark datasets, including the Middlebury and Garg et al. datasets. In addition, we show application of our method for constructing 3D Morphable Facial Models from dynamic 3D data

    A statistical multiresolution approach for face recognition using structural hidden Markov models

    Get PDF
    This paper introduces a novel methodology that combines the multiresolution feature of the discrete wavelet transform (DWT) with the local interactions of the facial structures expressed through the structural hidden Markov model (SHMM). A range of wavelet filters such as Haar, biorthogonal 9/7, and Coiflet, as well as Gabor, have been implemented in order to search for the best performance. SHMMs perform a thorough probabilistic analysis of any sequential pattern by revealing both its inner and outer structures simultaneously. Unlike traditional HMMs, the SHMMs do not perform the state conditional independence of the visible observation sequence assumption. This is achieved via the concept of local structures introduced by the SHMMs. Therefore, the long-range dependency problem inherent to traditional HMMs has been drastically reduced. SHMMs have not previously been applied to the problem of face identification. The results reported in this application have shown that SHMM outperforms the traditional hidden Markov model with a 73% increase in accuracy

    Illumination tolerance in facial recognition

    Get PDF
    In this research work, five different preprocessing techniques were experimented with two different classifiers to find the best match for preprocessor + classifier combination to built an illumination tolerant face recognition system. Hence, a face recognition system is proposed based on illumination normalization techniques and linear subspace model using two distance metrics on three challenging, yet interesting databases. The databases are CAS PEAL database, the Extended Yale B database, and the AT&T database. The research takes the form of experimentation and analysis in which five illumination normalization techniques were compared and analyzed using two different distance metrics. The performances and execution times of the various techniques were recorded and measured for accuracy and efficiency. The illumination normalization techniques were Gamma Intensity Correction (GIC), discrete Cosine Transform (DCT), Histogram Remapping using Normal distribution (HRN), Histogram Remapping using Log-normal distribution (HRL), and Anisotropic Smoothing technique (AS). The linear subspace models utilized were principal component analysis (PCA) and Linear Discriminant Analysis (LDA). The two distance metrics were Euclidean and Cosine distance. The result showed that for databases with both illumination (shadows), and lighting (over-exposure) variations like the CAS PEAL database the Histogram remapping technique with normal distribution produced excellent result when the cosine distance is used as the classifier. The result indicated 65% recognition rate in 15.8 ms/img. Alternatively for databases consisting of pure illumination variation, like the extended Yale B database, the Gamma Intensity Correction (GIC) merged with the Euclidean distance metric gave the most accurate result with 95.4% recognition accuracy in 1ms/img. It was further gathered from the set of experiments that the cosine distance produces more accurate result compared to the Euclidean distance metric. However the Euclidean distance is faster than the cosine distance in all the experiments conducted

    Neural Web Based Human Recognition

    Get PDF
    Face detection is one of the challenging problems in the image processing. A novel face detection system is presented in this paper. The approach relies on skin-based color features xtracted from two dimensional Discrete Cosine Transfer (DCT) and neural networks, which can be used to detect faces by using skin color from DCT coefficient of Cb and Cr feature vectors. This system contains the skin color which is the main feature of faces for detection, and then the skin face candidate is examined by using the neural networks, which learn from the feature of faces to classify whether the original image includes a face or not. The processing is based on normalization and Discrete Cosin Transfer. Finally the classification based on neural networks approach. The experiment results on upright frontal color face images from the internet show an excellent detection rate

    Emotion recognition using facial feature extraction

    Get PDF
    Computerized emotion recognition systems can be powerful tools to help solve problems in a wide range of fields including education, healthcare, and marketing. Existing systems use digital images or live video to track facial expressions on a person\u27s face and deduce that person\u27s emotional state. The research presented in this thesis explores combinations of several facial feature extraction techniques with different classifier algorithms. Namely, the feature extraction techniques used in this research were Discrete Cosine/Sine Transforms, Fast Walsh-Hadamard Transform, Principle Component Analysis, and a novel method called XPoint. Features were extracted from both global (using the entire facial image) and local (using only facial regions like the mouth or eyes) contexts and classified with Linear Discriminant Analysis and k-Nearest Neighbor algorithms. Some experiments also fused many of these features into one system in an effort to create even more accurate systems. The system accuracy for each feature extraction method/classifier combination was calculated and discussed. The combinations that performed the best produced systems between 85%-90% accurate. The most accurate systems utilized Discrete Sine Transform from global and local features in a Linear Discriminant Analysis classifier, as well as feature fusion of all features in a Linear Discriminant Classifier

    Local Entropy and Standard Deviation for Facial Expressions Recognition in Thermal Imaging

    Get PDF
    Emotional reactions are the best way to express human attitude and thermal imaging mainly used to utilize detection of temperature variations as in detecting spatial and temporal variation in the water status of grapevine. By merging the two facts this paper presents the Discrete Cosine Transform (DCT) with Local Entropy (LE) and Local Standard Deviation (LSD) features as an efficient filters for investigating human emotional state in thermal images. Two well known classifiers, K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) were combined with the earlier features and applied over a database with variant illumination, as well as occlusion by glasses and poses to generate a recognition model of facial expressions in thermal images. KNN based on DCT and LE gives the best accuracy compared with other classifier and features results

    Side-View Face Recognition

    Get PDF
    Side-view face recognition is a challenging problem with many applications. Especially in real-life scenarios where the environment is uncontrolled, coping with pose variations up to side-view positions is an important task for face recognition. In this paper we discuss the use of side view face recognition techniques to be used in house safety applications. Our aim is to recognize people as they pass through a door, and estimate their location in the house. Here, we compare available databases appropriate for this task, and review current methods for profile face recognition
    corecore