39,368 research outputs found

    Numerical Modeling of Debris Flows Induced by Dam-Break Using the Smoothed Particle Hydrodynamics (SPH) Method

    Get PDF
    Dam-break flows may change into debris flows if certain conditions are satisfied, such as abundant loose material and steep slope. These debris flows are typically characterized by high density and can generate strong impact forces. Due to the complexity of the materials that they are made of, it has always been very challenging to numerically simulate these phenomena and accurately reproduce experimentally debris flows’ processes. Therefore, to fill this gap, the formation-movement processes of debris flows induced by dam-break were simulated numerically, modifying the existing smoothed particle hydrodynamics (SPH) method. By comparing the shape and the velocity of dam break debris flows under different configurations, it was found that when simulating the initiation process, the number of particles in the upstream section is overestimated while the number of particles in the downstream area is underestimated. Furthermore, the formation process of dam-break debris flow was simulated by three models which consider different combinations of the viscous force, the drag force and the virtual mass force. The method taking into account all these three kinds of interface forces produced the most accurate outcome for the numerical simulation of the formation process of dam-break debris flow. Finally, it was found that under different interface force models, the particle velocity distribution did not change significantly. However, the direction of the particle force changed, which is due to the fact that the SPH model considers generalized virtual mass forces, better replicating real case scenarios. The modalities of dam failures have significant impacts on the formation and development of debris flows. Therefore, the results of this study will help authorities to select safe sites for future rehabilitation and relocation projects and can also be used as an important basis for debris flow risk management. Future research will be necessary to understand more complex scenarios to investigate mechanisms of domino dam-failures and their effects on debris flows propagation

    Generic closed loop controller for power regulation in dual active bridge DC-DC converter with current stress minimization

    Get PDF
    This paper presents a comprehensive and generalized analysis of the bidirectional dual active bridge (DAB) DC/DC converter using triple phase shift (TPS) control to enable closed loop power regulation while minimizing current stress. The key new achievements are: a generic analysis in terms of possible conversion ratios/converter voltage gains (i.e. Buck/Boost/Unity), per unit based equations regardless of DAB ratings, and a new simple closed loop controller implementable in real time to meet desired power transfer regulation at minimum current stress. Per unit based analytical expressions are derived for converter AC RMS current as well as power transferred. An offline particle swarm optimization (PSO) method is used to obtain an extensive set of TPS ratios for minimizing the RMS current in the entire bidirectional power range of - 1 to 1 per unit. The extensive set of results achieved from PSO presents a generic data pool which is carefully analyzed to derive simple useful relations. Such relations enabled a generic closed loop controller design that can be implemented in real time avoiding the extensive computational capacity that iterative optimization techniques require. A detailed Simulink DAB switching model is used to validate precision of the proposed closed loop controller under various operating conditions. An experimental prototype also substantiates the results achieved

    Modeling Supply Networks and Business Cycles as Unstable Transport Phenomena

    Full text link
    Physical concepts developed to describe instabilities in traffic flows can be generalized in a way that allows one to understand the well-known instability of supply chains (the so-called ``bullwhip effect''). That is, small variations in the consumption rate can cause large variations in the production rate of companies generating the requested product. Interestingly, the resulting oscillations have characteristic frequencies which are considerably lower than the variations in the consumption rate. This suggests that instabilities of supply chains may be the reason for the existence of business cycles. At the same time, we establish some link to queuing theory and between micro- and macroeconomics.Comment: For related work see http://www.helbing.or

    A survey of random processes with reinforcement

    Full text link
    The models surveyed include generalized P\'{o}lya urns, reinforced random walks, interacting urn models, and continuous reinforced processes. Emphasis is on methods and results, with sketches provided of some proofs. Applications are discussed in statistics, biology, economics and a number of other areas.Comment: Published at http://dx.doi.org/10.1214/07-PS094 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonlinear stability of flock solutions in second-order swarming models

    Get PDF
    In this paper we consider interacting particle systems which are frequently used to model collective behavior in animal swarms and other applications. We study the stability of orientationally aligned formations called flock solutions, one of the typical patterns emerging from such dynamics. We provide an analysis showing that the nonlinear stability of flocks in second-order models entirely depends on the linear stability of the first-order aggregation equation. Flocks are shown to be nonlinearly stable as a family of states under reasonable assumptions on the interaction potential. Furthermore, we numerically verify that commonly used potentials satisfy these hypotheses and investigate the nonlinear stability of flocks by an extensive case-study of uniform perturbations.Comment: 22 pages, 1 figure, 1 tabl

    Supercritical Water Gasification: Practical Design Strategies and Operational Challenges for Lab-Scale, Continuous Flow Reactors

    Full text link
    Optimizing an industrial-scale supercritical water gasification process requires detailed knowledge of chemical reaction pathways, rates, and product yields. Laboratory-scale reactors are employed to develop this knowledge base. The rationale behind designs and component selection of continuous flow, laboratory-scale supercritical water gasification reactors is analyzed. Some design challenges have standard solutions, such as pressurization and preheating, but issues with solid precipitation and feedstock pretreatment still present open questions. Strategies for reactant mixing must be evaluated on a system-by-system basis, depending on feedstock and experimental goals, as mixing can affect product yields, char formation, and reaction pathways. In-situ Raman spectroscopic monitoring of reaction chemistry promises to further fundamental knowledge of gasification and decrease experimentation time. High-temperature, high-pressure spectroscopy in supercritical water conditions is performed, however, long-term operation flow cell operation is challenging. Comparison of Raman spectra for decomposition of formic acid in the supercritical region and cold section of the reactor demonstrates the difficulty in performing quantitative spectroscopy in the hot zone. Future designs and optimization of SCWG reactors should consider well-established solutions for pressurization, heating, and process monitoring, and effective strategies for mixing and solids handling for long-term reactor operation and data collection
    • …
    corecore