41 research outputs found

    ECCCII-Based Current-Mode Universal Filter with Orthogonal Control of w_o and Q

    Get PDF
    This paper presents a new current-mode current-controlled four-input five-output universal filter employing one current-controlled current conveyor (CCCII), one electronically tunable CCCII and two grounded capacitors. The proposed configuration provides lowpass, bandpass, highpass, bandstop and allpass current responses that taken from the high-output impedance terminals, which enable easy cascadability of the current-mode operation. The filter also offers both orthogonal and electronic controls of the natural frequency and the quality factor through adjusting the bias current of the CCCIIs. For realizing all the filter responses, the proposed filter does not require passive component-matching condition and both active and passive sensitivities are low. In addition, a new current-mode current-controlled single-input five-output universal filter can be achieved by using an additional multiple-output minus-type CCCII. The proposed filter is simulated using PSPICE simulations to confirm the theoretical analysis

    Biquadratic Filter Applications Using a Fully-Differential Active-Only Integrator

    Get PDF
    A new class of active filters, real active-only filters is described and possible implementation issues of these filters are discussed. To remedy these issues, a fully-differential active-only integrator block built around current controlled current conveyors is presented. The integration frequency of the proposed circuit is adjustable over a wide frequency range. As an application, a real active-only filter based on the classical two-integrator loop topology is presented and designed. The feasibility of this filter in a 0.35µm CMOS process is verified through SPECTRE simulation program in the CADENCE design tool

    Current-Processing Current-Controlled Universal Biquad Filter

    Get PDF
    This paper presents a current-processing current-controlled universal biquad filter. The proposed filter employs only two current controlled current conveyor transconductance amplifiers (CCCCTAs) and two grounded capacitors. The proposed configuration can be used either as a single input three outputs (SITO) or as three inputs single output (TISO) filter. The circuit realizes all five different standard filter functions i.e. low-pass (LP), band-pass (BP), high-pass (HP), band-reject (BR) and all-pass (AP). The circuit enjoys electronic control of quality factor through the single bias current without disturbing pole frequency. Effects of non-idealities are also discussed. The circuit exhibits low active and passive sensitivity figures. The validity of proposed filter is verified through computer simulations using PSPICE

    One-Input Three-Output Current-Mode Universal Filter Using Translinear Current Conveyors

    Get PDF
    This paper presents a new current-mode universal filter with one-input three-output employing three translinear current conveyors and two grounded capacitors. The proposed filter provides low-pass, band-pass, high-pass current response with high output impedance output which can be directly connected for current-mode circuit. The band-pass and all-pass filters can also be obtained. The parameters wo and Q can be controlled separately and electronically by the bias currents of current conveyors. For realizing all filtering functions, no passive and active matching conditions are required. The active and passive sensitivities are low. The characteristic of the proposed circuit can be confirmed by SPICE simulations

    Current-mode electronically tunable universal filter using only plus-type current controlled conveyors and grounded capacitors

    Get PDF
    In this paper we present a new current-mode electronically tunable universal filter using only plus-type current controlled conveyors (CCCII+s) and grounded capacitors. The proposed circuit can simultaneously realize lowpass, bandpass, and highpass filter functions-all at high impedance outputs. The realization of a notch response does not require additional active elements. The circuit enjoys an independent current control of parameters omega(o) and omega(o)/Q. No element matching conditions are imposed. Both its active and passive sensitivities are low

    Novel Resistorless Mixed-Mode PID Controller with Improved Low-Frequency Performance

    Get PDF
    This paper introduces a new resistorless mixed-mode proportional-integral-derivative (PID) controller. It employs six simple transconductors and only two grounded capacitors. The proposed PID controller offers several advantageous features of resistorless configuration, use of grounded capacitors, independent electronic-tuning characteristic of its parameters, and mixed-mode operation such as current, transimpedance, transadmittance, and voltage modes. The parasitic element effects of the transconductors on the proposed controller are investigated and the improved low-frequency performance of the proposed controller is then discussed. As applications, the proposed controller is demonstrated on two closed-loop systems. The PSPICE simulations with TSMC 0.18µm CMOS process and ±0.9V supply voltage verify the theoretical analysis

    Electronically Tunable Sinusoidal Oscillator Circuit

    Get PDF
    This paper presents a novel electronically tunable third-order sinusoidal oscillator synthesized from a simple topology, employing current-mode blocks. The circuit is realized using the active element: Current Controlled Conveyors (CCCIIs) and grounded passive components. The new circuit enjoys the advantages of noninteractive electronically tunable frequency of oscillation, use of grounded passive components, and the simultaneous availability of three sinusoidal voltage outputs. Bias current generation scheme is given for the active elements used. The circuit exhibits good high frequency performance. Nonideal and parasitic study has also been carried out. Wide range frequency tuning is shown with the bias current. The proposed theory is verified through extensive PSPICE simulations using 0.25 μm CMOS process parameters

    Deriving (MO)(I)CCCII Based Second-order Sinusoidal Oscillators with Non-interactive Tuning Laws using State Variable Method

    Get PDF
    The paper discusses systematic realization of second-order sinusoidal oscillators using multiple-output second-generation current controlled conveyor (MO-CCCII) and/or its inverting equivalent, namely the multiple-output inverting second-generation current controlled conveyor (MO-ICCCII) by state variable method. State variable method is a powerful technique and has been used extensively in the past to realize active RC oscillators using a variety of active building blocks (ABB). In this work, a noninteractive relationship between the condition of oscillation (CO) and the frequency of oscillation (FO) has been chosen priori and then state variable method is applied to derive the oscillators with grounded capacitors. All the resulting oscillator circuits, eight of them, are “resistor-less”, employ grounded capacitors and do not use more than three (MO)(I)CCCIIs. PSPICE simulation results of a possible CMOS implementation of the oscillators using 0:35μm TSMC CMOS technology parameters have validated their workability

    New Universal Current-mode Biquad Using Only Three ZC-CFTAs

    Get PDF
    The objective of this paper is to present a new universal Current-mode biquad capable of providing all the five basic filter functions, namely, low pass (LP), Band pass (BP), high pass (HP), Band reject (BR) and all pass (AP) from the same configuration using only three Z - copy current follower transconductance amplifiers (ZC-CFTA) along with the provision of independent electronic tunability of the filter parameters f0 and Q0 (or bandwidth) through two separate DC bias currents while employing both grounded capacitors as desirable for integrated circuit implementation. The workability of the proposed structure is verified by PSPICE simulations based on CMOS implementation of the ZC-CFTA
    corecore