57,153 research outputs found

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    Robust exact differentiators with predefined convergence time

    Full text link
    The problem of exactly differentiating a signal with bounded second derivative is considered. A class of differentiators is proposed, which converge to the derivative of such a signal within a fixed, i.e., a finite and uniformly bounded convergence time. A tuning procedure is derived that allows to assign an arbitrary, predefined upper bound for this convergence time. It is furthermore shown that this bound can be made arbitrarily tight by appropriate tuning. The usefulness of the procedure is demonstrated by applying it to the well-known uniform robust exact differentiator, which the considered class of differentiators includes as a special case

    On the existence of a solution to a spectral estimation problem \emph{\`a la} Byrnes-Georgiou-Lindquist

    Full text link
    A parametric spectral estimation problem in the style of Byrnes, Georgiou, and Lindquist was posed in \cite{FPZ-10}, but the existence of a solution was only proved in a special case. Based on their results, we show that a solution indeed exists given an arbitrary matrix-valued prior density. The main tool in our proof is the topological degree theory.Comment: 6 pages of two-column draft, accepted for publication in IEEE-TA

    A New Distribution-Free Concept for Representing, Comparing, and Propagating Uncertainty in Dynamical Systems with Kernel Probabilistic Programming

    Full text link
    This work presents the concept of kernel mean embedding and kernel probabilistic programming in the context of stochastic systems. We propose formulations to represent, compare, and propagate uncertainties for fairly general stochastic dynamics in a distribution-free manner. The new tools enjoy sound theory rooted in functional analysis and wide applicability as demonstrated in distinct numerical examples. The implication of this new concept is a new mode of thinking about the statistical nature of uncertainty in dynamical systems
    corecore